73 research outputs found

    Identification of novel small RNAs in extracellular vesicles produced by Actinobacillus pleuropneumoniae

    Get PDF
    Extracellular vesicle (EV) production by bacteria is an important mechanism for microbial communication and host-pathogen interaction. EVs of some bacterial species have been reported to contain nucleic acids. However, the role of small RNAs (sRNAs) packaged in EVs is poorly understood. Here, we report on the RNA cargo of EVs produced by the pig pathogen Actinobacillus pleuropneumoniae, the causal agent of porcine pleuropneumonia, a disease which causes substantial economic losses to the swine industry worldwide. The EVs produced by aerobically and anaerobically grown bacteria were only slightly different in size and distribution. Total cell and outer membrane protein profiles and lipid composition of A. pleuropneumoniae whole cell extracts and EVs were similar, although EVs contained rough lipopolysaccharide compared to the smooth form in whole cells. Approximately 50% of Galleria mellonella larvae died after the injection of EVs. RNAseq, RT-PCR, protection from nuclease degradation, and database searching identified previously described and 13 novel A. pleuropneumoniae sRNAs in EVs, some of which were enriched compared to whole cell content. We conclude that A. pleuropneumoniae EVs contain sRNAs, including those known to be involved in virulence, and some with homologs in other Pasteurellaceae and/or non-Pasteurellaceae. Further work will establish whether the novel sRNAs in A. pleuropneumoniae EVs play any role in pathogenesis

    A central composite rotatable design (CCRD) approach to study the combined effect of antimicrobial agents against bacterial pathogens

    No full text
    The combination of antimicrobial agents has been proposed as a therapeutic strategy to control bacterial diseases and to reduce the emergence of antibiotic-resistant strains in clinical environments. In this study, the interaction between the lantibiotic bovicin HC5 with chloramphenicol, gentamicin, nisin, lysostaphin and hydrogen peroxide against Staphylococcus aureus O46 was evaluated by MIC assays. The central composite rotatable design (CCRD), a robust and economic statistical design, was used to combine concentration levels of different antimicrobials agents with distinct mechanisms of action and the presence of significant interactions among the antimicrobials was determined by regression analysis. According to the adjusted model, there were no significant interactions between bovicin HC5 and gentamicin, lysostaphin, nisin or hydrogen peroxide. However, bovicin HC5 showed a significant interaction (P < 0.02) with chloramphenicol. This is the first study applying the CCRD approach to evaluate the combined effect of antimicrobials against S. aureus. Based on our results, this approach is an effective strategy to determine synergistic interactions between antimicrobial agents applied in human and veterinary medicine against bacterial pathogens
    corecore