14 research outputs found

    Design and field procedures for the clinical reappraisal of the Composite International Diagnostic Interview version 3.3 in Qatar's national mental health study

    Get PDF
    Background The Composite International Diagnostic Interview (CIDI) has been clinically reappraised in several studies conducted mainly in the US and Europe. This report describes the methodology used to conduct one of the Middle East's largest clinical reappraisal studies. The study was carried out in conjunction with the World Mental Health Qatar—the first national psychiatric epidemiological study of common mental disorders in the country. This study aimed to evaluate the diagnostic consistency of core modules of the newly translated and adapted Arabic version of the CIDI 5.0 against the independent clinical diagnoses based on the Structured Clinical Interview for DSM-5 (SCID-5). Methods Telephone follow-up interviews were administered by trained clinicians using the latest research edition of the SCID for DSM-5. Telephone administered interviews were key in the data collection, as the study took place during the COVID-19 pandemic. Results Overall, within 12 months, 485 interviews were completed. The response rate was 52%. Quality control monitoring documented excellent adherence of clinical interviews to the rating protocol. Conclusions The overall methods used in this study proved to be efficient and effective. For future research, instrument cultural adaptation within the cultural context is highly recommended

    TECPR2-related hereditary sensory and autonomic neuropathy in two siblings from Palestine

    No full text
    Due to the majority of currently available genome data deriving from individuals of European ancestry, the clinical interpretation of genomic variants in individuals from diverse ethnic backgrounds remains a major diagnostic challenge. Here, we investigated the genetic cause of a complex neurodevelopmental phenotype in two Palestinian siblings. Whole exome sequencing identified a homozygous missense TECPR2 variant (Chr14(GRCh38):g.102425085G>A; NM_014844.5:c.745G>A, p.(Gly249Arg)) absent in gnomAD, segregating appropriately with the inheritance pattern in the family. Variant assessment with in silico pathogenicity prediction and protein modeling tools alongside population database frequencies led to classification as a variant of uncertain significance. As pathogenic TECPR2 variants are associated with hereditary sensory and autonomic neuropathy with intellectual disability, we reviewed previously published candidate TECPR2 missense variants to clarify clinical outcomes and variant classification using current approved guidelines, classifying a number of published variants as of uncertain significance. This work highlights genomic healthcare inequalities and the challenges in interpreting rare genetic variants in populations underrepresented in genomic databases. It also improves understanding of the clinical and genetic spectrum of TECPR2-related neuropathy and contributes to addressing genomic data disparity and inequalities of the genomic architecture in Palestinian populations.Published version, accepted version (12 month embargo)The article is available via Open Access. Click on the 'Additional link' above to access the full-text

    Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder

    No full text
    Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted version (6 month embargo), submitted versio
    corecore