34 research outputs found

    Digital terrain analysis of the Haute-Mentue catchment an scale effect for hydrological modelling with TOPMODEL

    No full text
    International audienceIt is widely recognised that topography plays an important role in the generation of runoff. The scale of a digital elevation model has been found to have some impacts on the results of hydrological modelling in several studies. In particular it has been shown that the representation of the statistical distribution of the topographic index used by TOPMODEL is sensitive to the scale of the digital terrain model. The objectives of this study are to develop an analysis of the topography and scale effects for the Haute-Mentue catchment and to test the role of different spatial resolution on parameter calibration. The major result is that the spatial scale is important for the parameter values, but not determinant for the modelling results if a pertinent methodology is adopted for the determination of digital watershed representation. Keywords: digital elevation model, topographic index, scale problems, TOPMODEL</p

    A Single Polar Residue and Distinct Membrane Topologies Impact the Function of the Infectious Bronchitis Coronavirus E Protein

    Get PDF
    The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection

    Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling

    Full text link

    Hydrologie appliquée

    No full text
    corecore