5 research outputs found

    Effects of Xrays on Perovskite Solar Cells

    No full text
    Synchrotron micro- and nanoprobe beamlines have demonstrated great potential to advance photovoltaic devices. Most importantly, their small X-ray spot size has enabled the direct correlation of electrical performance with elemental composition at subgrain resolution for a variety of polycrystalline solar cells. Whereas the bulk of most inorganic semiconductors is stable under the high X-ray flux of focused X-ray beams, semiconductors with organic components are prone to a variety of degradation mechanisms. This is particularly critical to evaluate for the emerging organometal halide perovskite solar cells. Here, we investigate the effects of hard X-rays on the nanoscale performance and elemental distribution of these solar cells. We show that their composition does not change during common operando and in situ measurements at synchrotron nanoprobes. However, we found a significant X-ray-induced electronic degradation of solar cells with methylammonium lead iodide absorbers. Time- and dose-dependent measurements unveiled two characteristic degradation time constants on the order of 12 and 200 s that are independent of the X-ray flux. On the basis of heat and dose simulations, we attribute the fast decay to the dose-driven creation of recombination centers, while the slow decay is compatible with the observation of compositional changes. Finally, we detail how degradation-induced measurement artifacts can be outrun and showcase the high correlation of the X-ray-beam-induced current with the iodine and lead distribution

    An agenda for creative practice in the new mobilities paradigm

    Get PDF
    Creative practices have made a standing contribution to mobilities research. We write this article as a collective of 25 scholars and practitioners to make a provocation: to further position creative mobilities research as a fundamental contribution and component in this field. The article explores how creative forms of research—whether in the form of artworks, exhibitions, performances, collaborations, and more—has been a foundational part of shaping the new mobilities paradigm, and continues to influence its methodological, epistemological, and ontological concerns. We tour through the interwoven history of art and mobilities research, outlining five central contributions that creativity brings. Through short vignettes of each author’s creative practice, we discuss how creativity has been key to the evolution and emergence of how mobilities research has expanded to global audiences of scholars, practitioners, and communities. The article concludes by highlighting the potency of the arts for lively and transdisciplinary pathways for future mobilities research in the uncertainties that lay ahead
    corecore