73 research outputs found

    Rapid diagnosis of lyme disease: Flagellin gene-based nested polymerase chain reaction for identification of causative Borrelia species

    Get PDF
    AbstractObjective: Each of Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii has characteristic restriction sites in its flagellin gene. The authors focused on this gene and developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for rapid diagnosis of Lyme disease.Methods: External and internal primer sets were designed for nested PCR to amplify an approximately 580 by fragment of the flagellin gene that includes species-specific restriction sites. DNA extracted from tissue samples of mice and humans were used as templates for PCR. The amplicons obtained were digested with HapII, HhaI, CelII HincII, or Ddel endonuclease.Results: In mice experimentally infected with each of B. burgdorferi sensu stricto, B. garinii, and B. afzelii, borrelial DNA was detected irrespective of differences in the causative species. However, RFLP of the amplicons was able to identify the species. Skin biopsy samples from 11 Japanese patients with erythema migrans were subjected to both PCR and culture tests. Borrelial infections were detected in seven cases (64%) by PCR and eight cases (73%) by culture. All PCR-positive samples were also positive by culture. The causative species in human infections was easily identified as B. garinii by RFLP analysis of the amplicons.Conclusion: The nested PCR-RFLP system appears to be an easy and reliable diagnostic tool for the detection and species identification of borreliae in human cutaneous biopsies

    New Features on the Expression and Trafficking of mGluR1 Splice Variants Exposed by Two Novel Mutant Mouse Lines

    Get PDF
    Metabotropic glutamate receptors (mGluRs) couple to G-proteins to modulate slow synaptic transmission via intracellular second messengers. The first cloned mGluR, mGluR1, regulates motor coordination, synaptic plasticity and synapse elimination. mGluR1 undergoes alternative splicing giving rise to four translated variants that differ in their intracellular C-terminal domains. Our current knowledge about mGluR1 relates almost entirely to the long mGluR1α isoform, whereas little is known about the other shorter variants. To study the expression of mGluR1γ, we have generated by means of the CRISPR/Cas9 system a new knock-in (KI) mouse line in which the C-terminus of this variant carries two short tags. Using this mouse line, we could establish that mGluR1γ is either untranslated or in amounts that are undetectable in the mouse cerebellum, indicating that only mGluR1α and mGluR1β are present and active at cerebellar synapses. The trafficking and function of mGluR1 appear strongly influenced by adaptor proteins such as long Homers that bind to the C-terminus of mGluR1α. We generated a second transgenic (Tg) mouse line in which mGluR1α carries a point mutation in its Homer binding domain and studied whether disruption of this interaction influenced mGluR1 subcellular localization at cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses by means of the freeze-fracture replica immunolabeling technique. These Tg animals did not show any overt behavioral phenotype, and despite the typical mGluR1 perisynaptic distribution was not significantly changed, we observed a higher probability of intrasynaptic diffusion suggesting that long Homers regulate the lateral mobility of mGluR1. We extended our ultrastructural analysis to other mouse lines in which only one mGluR1 variant was reintroduced in PC of mGluR1-knock out (KO) mice. This work revealed that mGluR1α preferentially accumulates closer to the edge of the postsynaptic density (PSD), whereas mGluR1β has a less pronounced perijunctional distribution and, in the absence of mGluR1α, its trafficking to the plasma membrane is impaired with an accumulation in intracellular organelles. In conclusion, our study sets several firm points on largely disputed matters, namely expression of mGluR1γ and role of the C-terminal domain of mGluR1 splice variants on their perisynaptic clustering

    Farnesylation of Retinal Transducin Underlies Its Translocation during Light Adaptation

    Get PDF
    SummaryG proteins are posttranslationally modified by isoprenylation: either farnesylation or geranylgeranylation. The γ subunit of retinal transducin (Tα/Tβγ) is selectively farnesylated, and the farnesylation is required for light signaling mediated by transducin in rod cells. However, whether and how this selective isoprenylation regulates cellular functions remain poorly understood. Here we report that knockin mice expressing geranylgeranylated Tγ showed normal rod responses to dim flashes under dark-adapted conditions but exhibited impaired properties in light adaptation. Of note, geranylgeranylation of Tγ suppressed light-induced transition of Tβγ from membrane to cytosol, and also attenuated its light-dependent translocation from the outer segment to the inner region, an event contributing to retinal light adaptation. These results indicate that, while the farnesylation of transducin is interchangeable with the geranylgeranylation in terms of the light signaling, the selective farnesylation is important for visual sensitivity regulation by providing sufficient but not excessive membrane anchoring of Tβγ

    Laparoscopy-Assisted Pancreaticoduodenectomy for Pancreatic Head Tumor at a Japanese Cancer Institute

    Get PDF
    Laparoscopic surgery is a less invasive treatment option for tumors in the intraabdominal organs; however, the safety and indication of laparoscopic or laparoscopy assisted pancreaticoduodenectomy (LPD) is still controversial. We attempted LPD in four cases for intraductal papillary mucinous neoplasm (IPMN) located in the pancreatic head and we report the surgical records and short-term outcome. LPD was carried out in four patients including three patients with the combined type IPMN and one with the branch type, based on the International Consensus Guidelines. None of the patients had invasive carcinoma based on preoperative imaging diagnosis. Laparoscopic procedures were performed until isolation of the pancreas head and duodenum, and final resection of PD and intestinal reconstruction were performed using small incision laparotomy (7-8cm). The mean total operating time was 882 minutes (820-932 minutes), mean blood loss was 925ml (610-1550ml) and red cell transfusion was not required in any patients. One patient underwent reoperation for bleeding at the pancreaticojejunostomy site at day 1. Mean duration until patients were able to walk was 3.5 days (2-6 days) and duration of use of analgesia was limited to within 7 days. Grade B pancreatic fistula was observed in one patient and jejunal ileus was observed in one patient. There were no deaths. LPD was safely performed and blood loss was limited, although the operating time was long. Postoperative recovery in patients without complications might be better than the conventional PD under laparotomy. Future study is necessary

    Clinical significance and origin of leukocytes that lack HLA-A allele expression in patients with acquired aplastic anemia

    Get PDF
    To gain insight into the origin and clinical significance of leukocytes that lack human leukocyte antigen A (HLA-A) allele expression caused by a copy-number-neutral loss of heterozygosity in the short arm of chromosome 6 in patients with acquired aplastic anemia (AA), we used a high-sensitivity flow cytometry assay to investigate the presence of HLA-A allele-lacking leukocytes (HLA-LLs) in 144 AA patients. HLA-LLs, accounting for 0.2–99.8% of each leukocyte population, were detected in 18 of 71 (25.4%) newly diagnosed patients and in 25 of 73 (34.2%) previously treated patients. The lineage combination patterns of the HLA-LLs in the 43 HLA-LL+ patients were granulocytes (Gs), monocytes (Ms), B cells (Bs), and T cells (Ts; GMBT) in 13 cases, GMB in 16 cases, GM in 11 cases, and B alone in three cases. The response rate to antithymocyte globulin plus cyclosporine therapy (100%) and the 2-year, failure-free survival rate (100%) in 8 newly diagnosed HLA-LL+ patients were significantly higher than in 23 HLA-LL− patients (52.2% for both). These data suggest that HLA-LLs are a useful marker of the presence of immune pathophysiology in AA and that T-cell attacks against hematopoietic progenitor cells, rather than against hematopoietic stem cells, can trigger bone marrow failure in AA patients. © 2016 ISEH - International Society for Experimental HematologyEmbargo Period 12 month

    BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

    Get PDF
    The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore