11,971 research outputs found

    Exploring the practical knowledge of eccentric resistance training in high-performance strength and conditioning practitioners

    Get PDF
    Habitual use of eccentric exercise has been recognised to increase strength and power; however, the current body of knowledge has limited potential to understand the application of such resistance training in athletic populations. In order to develop appropriate applied research, that relates to elite athletic populations, it is vital to appreciate the practical knowledge of strength and conditioning practitioners operating in high-performance environments. This study summarised the questionnaire responses from 100 strength and conditioning practitioners operating in performance sport relating to questions such as the training effects to various eccentric resistance training regimes, the rationale for the use of these techniques and the knowledge supporting its application. The combination of closed and open-ended questions enabled a thematic analysis to be conducted. There was evidence that practitioners employed a variety of eccentric training methodologies; however, there was interest in gaining greater understanding of the training dose to bring about the optimal adaptive changes, and importantly how this might translate to sport-specific performance. In addition, practitioners would welcome recommendations associated with eccentric training, whilst concurrently minimising the issues of excessive fatigue, muscle damage and soreness. The training effects of interest included neural, architectural and morphological adaptations and, importantly, translation to performance of sports-specific skills. Collectively, these responses called for more practically relevant research to be conducted within the high-performance environment, alongside more opportunities for professional development through learning and knowledge-sharing opportunities. The outcomes summarised in this work should inform future applied research projects and educational content relating to eccentric training

    Participation and Presence: Interrogating Active Learning

    Get PDF
    Active learning forms a common teaching method within information literacy instruction. Commitment to participatory models of teaching and learning requires critical vigilance, however, particularly given changing information environments and broader educational priorities. This theoretical paper interrogates active learning and its prevalence within library instruction. Literature from library and information science (LIS), education, educational technology, and development studies is used to consider active learning in relation to self-protective information behaviors, the performance of learning, nonparticipatory and resistant activity, technological risk, and questions of inclusion. This discussion invites readers to acknowledge the complexity inherent in adopting active learning for contemporary settings

    Sommerfeld's image method in the calculation of van der Waals forces

    Full text link
    We show how the image method can be used together with a recent method developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals interaction between an atom and a perfectly conducting surface of arbitrary shape. We discuss in detail the case of an atom and a semi- infinite conducting plane. In order to employ the above procedure to this problem it is necessary to use the ingenious image method introduced by Sommerfeld more than one century ago, which is a generalization of the standard procedure. Finally, we briefly discuss other interesting situations that can also be treated by the joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory under the Influence of External Conditions (QFEXT11

    A Terraced Scanning Superconducting Quantum Interference Device Susceptometer with Sub-Micron Pickup Loops

    Full text link
    Superconducting Quantum Interference Devices (SQUIDs) can have excellent spin sensitivity depending on their magnetic flux noise, pick-up loop diameter, and distance from the sample. We report a family of scanning SQUID susceptometers with terraced tips that position the pick-up loops 300 nm from the sample. The 600 nm - 2 um pickup loops, defined by focused ion beam, are integrated into a 12-layer optical lithography process allowing flux-locked feedback, in situ background subtraction and optimized flux noise. These features enable a sensitivity of ~70 electron spins per root Hertz at 4K.Comment: See http://stanford.edu/group/moler/publications.html for an auxiliary document containing additional fabrication details and discussio

    Book Reviews

    Get PDF
    THE FAMILY IN INTERNATIONAL LAW: SOME EMERGING PROBLEMS Edited by R. Lillich Charlottesville: Michie, 1981. Pp. xii, 164 Reviewed by Stephen C. Hicks ================ TREATIES OF THE PEOPLE\u27S REPUBLIC OF CHINA, 1949-1978: AN ANNOTATED COMPILATION By Grant F. Rhode and Reid E. Whitlock Boulder, Colorado: Westview Press, 1980. Pp. ix, 207. $25.00. Reviewed by David A. Elder =============== STATE AND DIPLOMATIC IMMUNITY By Charles Lewis London: Lloyd\u27s Press of London, Ltd., 1980. Pp. xv, 135. 16f. Reviewed by Edward A. Lain

    Airfoil design by numerical optimization using a minicomputer

    Get PDF
    A computer program developed for the automated design of low speed airfoils utilizes a generalized Joukowski method for aerodynamic analysis coupled with a conjugate gradient, penalty function, numerical optimization algorithm to give an efficient calculation technique for use with minicomputers. The program designs airfoils with a prescribed pressure distribution as well as those which minimize or maximize some aerodynamic force coefficient. At present the method is restricted to inviscid, incompressible flow. A typical design problem will execute in 4.5 hr on an HP 9830 minicomputer

    Microgravity Droplet Combustion in CO2 Enriched Environments at Elevated Pressures

    Get PDF
    Microgravity droplet combustion experiments were performed in elevated concentrations of CO2 at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm supported on a quartz fiber, were used in these experiments. The ambient O2 concentration was held constant at 21% and the CO2 concentrations ranged from 0% to a maximum of 70%, by volume with the balance consisting of N2 . Results from the methanol tests showed slight decreases in burning rates with increased CO2 concentrations at all ambient pressures. The n-heptane tests show slight increases in burning rates with increasing CO2 concentrations at each pressure level. Instantaneous radiative heat flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 microns to 40.0 microns) and a narrowband radiometer (i.e., centered at 5.6 microns with a filter width at half maximum of 1.5 microns). Radiative exchanges between the droplet and surrounding gases as well as the soot field produce departures from the classical quasisteady theory which would predict a decrease in burning rates with increasing CO2 concentrations in microgravity
    • …
    corecore