11 research outputs found

    MRI safety and devices: An update and expert consensus

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154533/1/jmri26909_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154533/2/jmri26909.pd

    Glioma consensus contouring recommendations from a MR-Linac International Consortium Research Group and evaluation of a CT-MRI and MRI-only workflow

    Get PDF
    Introduction: This study proposes contouring recommendations for radiation treatment planning target volumes and organs-at-risk (OARs) for both low grade and high grade gliomas. Methods: Ten cases consisting of 5 glioblastomas and 5 grade II or III gliomas, including their respective gross tumor volume (GTV), clinical target volume (CTV), and OARs were each contoured by 6 experienced neuro-radiation oncologists from 5 international institutions. Each case was first contoured using only MRI sequences (MRI-only), and then re-contoured with the addition of a fused planning CT (CT-MRI). The level of agreement among all contours was assessed using simultaneous truth and performance level estimation (STAPLE) with the kappa statistic and Dice similarity coefficient. Results: A high level of agreement was observed between the GTV and CTV contours in the MRI-only workflow with a mean kappa of 0.88 and 0.89, respectively, with no statistically significant differences compared to the CT-MRI workflow (p = 0.88 and p = 0.82 for GTV and CTV, respectively). Agreement in cochlea contours improved from a mean kappa of 0.39 to 0.41, to 0.69 to 0.71 with the addition of CT information (p < 0.0001 for both cochleae). Substantial to near perfect level of agreement was observed in all other contoured OARs with a mean kappa range of 0.60 to 0.90 in both MRI-only and CT-MRI workflows. Conclusions: Consensus contouring recommendations for low grade and high grade gliomas were established using the results from the consensus STAPLE contours, which will serve as a basis for further study and clinical trials by the MR-Linac Consortium

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Magnetic resonance thermometry of flowing blood

    No full text
    Blood temperature is a key determinant of tissue temperature and can be altered under normal physiological states, such as exercise, in diseases such as stroke or iatrogenically in therapies which modulate tissue temperature, such as therapeutic hypothermia. Currently available methods for the measurement of arterial and venous temperatures are invasive and, for small animal models, are impractical. Here, we present a methodology for the measurement of intravascular and tissue temperature by magnetic resonance imaging (MRI) using the lanthanide agent TmDOTMA- (DOTMA, tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; Tm, thulium). The approach makes use of phase-sensitive imaging measurements, combined with spectrally selective excitation, to monitor the temperature-dependent shift in the resonance of proton nuclei associated with water and with methyl groups of TmDOTMA- . Measurements were first made in a flow phantom modelling diastolic blood flow in the mouse aorta or inferior vena cava (IVC) and imaged using 7-T preclinical MRI with a custom-built surface coil. Flowing and static fluid temperatures agreed to within 0.12°C for these experiments. Proof-of-concept experiments were also performed on three healthy adult mice, demonstrating temperature measurements in the aorta, IVC and kidney following a bolus injection of contrast agent. A small (0.7-1°C), but statistically significant, higher kidney temperature compared with the aorta (p = 0.002-0.007) and IVC (p = 0.003-0.03) was shown in all animals. These findings demonstrate the feasibility of the technique for in vivo applications and illustrate how the technique could be used to explore the relationship between blood and tissue temperature for a wide range of applications.Funding for this work was provided by the Canadian Institutes of Health Research Grant (MOP231389 to J.G.S.)

    Blood-brain barrier opening of the default mode network in Alzheimer's disease with magnetic resonance-guided focused ultrasound

    No full text
    The blood-brain barrier (BBB) protects the brain but is also an important obstacle for the effective delivery of therapeutics in Alzheimer's disease and other neurodegenerative disorders. Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) has been shown to reversibly disrupt the BBB. However, treatment of diffuse regions across the brain along with the effect on Alzheimer's disease relevant pathology need to be better characterized. This study is an open-labelled single-arm trial (NCT04118764) to investigate the feasibility of modulating BBB permeability in the default mode network and the impact on cognition, amyloid and tau pathology as well as BBB integrity. Nine participants [mean age 70.2 ± 7.2 years, mean Mini-Mental State Examination (MMSE) 21.9] underwent three biweekly procedures with follow-up visits up to 6 months. The BBB permeability of the bilateral hippocampi, anterior cingulate cortex and precuneus was transiently increased without grade 3 or higher adverse events. Participants did not experience worsening trajectory of cognitive decline (ADAS-cog11, MMSE). Whole brain vertex-based analysis of the 18F-florbetaben PET imaging demonstrated clusters of modest SUVR reduction in the right parahippocampal and inferior temporal lobe. However, CSF and blood biomarkers did not demonstrate any amelioration of Alzheimer's disease pathology (P-tau181, amyloid-β42/40 ratio), nor did it show persistent BBB dysfunction (plasma PDGFRbeta and CSF-to-plasma albumin ratio). This study provides neuroimaging and fluid biomarker data to characterize the safety profile of MRgFUS BBB modulation in neurodegeneration as a potential strategy for enhanced therapeutic delivery
    corecore