73 research outputs found

    Multi-roles affiliation model for general user profiling

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Multifunctional Lateral Transition-Metal Disulfides Heterojunctions

    Full text link
    The intrinsic spin-dependent transport properties of two types of lateral VS2|MoS2 heterojunctions are systematically investigated using first-principles calculations, and their various nanodevices with novel properties are designed. The lateral VS2|MoS2 heterojunction diodes show a perfect rectifying effect and are promising for the applications of Schottky diodes. A large spin-polarization ratio is observed for the A-type device and pure spin-mediated current is then realized. The gate voltage significantly tunes the current and rectification ratio of their field-effect transistors (FETs). In addition, they all have sensitive photoresponse to blue light, and could be used as photodetector and photovoltaic device. Moreover, they generate the effective thermally-driven current when a temperature gratitude appears between the two terminals, suggesting them as potential thermoelectric materials. Hence, the lateral VS2|MoS2 heterojunctions show a multifunctional nature and have various potential applications in spintronics, optoelectronics, and spin caloritronics

    Nicotine Induces Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor by α1 Nicotinic Acetylcholine Receptor–Mediated Activation in PC9 Cells

    Get PDF
    IntroductionNicotine, the major component among the 4000 identified chemicals in cigarette smoke, binds to nicotinic acetylcholine receptors (nAChRs) on non–small-cell lung cancer (NSCLC) cells and regulates cellular proliferation by activating mitogen-activated protein kinases [AQ: MAPK has been expanded to mitogen-activated protein kinases. Please approve.]and PI3K/Akt pathways. In patients with smoking-related lung cancer who continue smoking, the anticancer effect of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is weaker than that in nonsmokers; however, the precise reason for this difference remains unclear. We investigated the role of α1 nAChR subunit in this phenomenon.MethodsWe screened for α1 nAChR mRNA in three NSCLC cell lines and analyzed the protein in resected primary NSCLC tissues. We used Western blot and RNA interference (siRNA) methodology to confirm the results.ResultsWe determined that α1 nAChR plays an essential role in nicotine-induced cell signaling and nicotine-induced resistance to EGFR-TKI. In addition, we showed that silencing of α1 nAChR subunit in NSCLC may suppress the nicotine-induced resistance to EGFR-TKI.ConclusionsThese results further implicate nicotine in lung carcinogenesis, and suggest that α1 nAChR may be a biomarker for EGFR-TKI treatment and also a personalizing target molecule for patients with smoking-related lung cancer

    Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity

    Full text link
    The demand for high‐performance absorbers in the microwave frequencies, which can reduce undesirable radiation that interferes with electronic system operation, has attracted increasing interest in recent years. However, most devices implemented so far are opaque, limiting their use in optical applications that require high visible transparency. Here, a scheme is demonstrated for microwave absorbers featuring high transparency in the visible range, near‐unity absorption (≈99.5% absorption at 13.75 GHz with 3.6 GHz effective bandwidth) in the Ku‐band, and hence excellent electromagnetic interference shielding performance (≈26 dB). The device is based on an asymmetric Fabry–PĂ©rot cavity, which incorporates a monolayer graphene and a transparent ultrathin (8 nm) doped silver layer as absorber and reflector, and fused silica as the middle dielectric layer. Guided by derived formulism, this asymmetric cavity is demonstrated with microwaves near‐perfectly and exclusively absorbs in the ultrathin graphene film. The peak absorption frequency of the cavity can be readily tuned by simply changing the thickness of the dielectric spacer. The approach provides a viable solution for a new type of microwave absorber with high visible transmittance, paving the way towards applications in the area of optics.A general strategy is presented to design a new type of microwave absorber based on an asymmetric Fabry–PĂ©rot resonant cavity by employing monolayer graphene, transparent spacer, and ultrathin doped Ag film. This asymmetric cavity is demonstrated with microwaves near‐perfectly and exclusively absorbs in the ultrathin graphene layer at resonances and maintains high visible transmittance.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151816/1/advs1299-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151816/2/advs1299.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151816/3/advs1299_am.pd
    • 

    corecore