53 research outputs found
Chronic idiopathic axonal polyneuropathy: Prevalence of pain and impact on quality of life
BACKGROUND AND AIM: Chronic idiopathic axonal polyneuropathy (CIAP) is a term describing axonal neuropathies of insidious onset, with slow or no progression of the disease over at least 6 months and with no etiology being identified despite appropriate investigations. We aimed to establish the prevalence of pain in patients with CIAP and investigate the impact of pain on quality of life (QoL). METHODS: All consecutive patients with CIAP attending a specialist neuropathy clinic were invited to participate. Pain was assessed via the DN4 questionnaire and the visual analogue scale (VAS). Overall Neuropathy Limitations Scale (ONLS) was used to assess the severity of neuropathy. The SF-36 questionnaire was used to measure participants' quality of life. RESULTS: Fifty-five patients with CIAP were recruited (63.6% male, mean age 73.4 ¹ 8.7 years). Based on the DN4 questionnaire, peripheral neuropathic pain was present in 33 patients (60.0%). After having adjusted for age, gender and disease severity pain showed significant negative correlations with the energy/fatigue domain of QoL (β = -0.259, p = 0.049), with the emotional well-being domain (β = -0.368, p = 0.007) and the general health perception domain (β = -0.356, p = 0.007). CONCLUSION: Pain is very prevalent in CIAP and is associated with poorer emotional well-being, worse general health perception, and increased fatigue
Conformational fingerprinting with Raman spectroscopy reveals protein structure as a translational biomarker of muscle pathology
\ua9 2024 The Royal Society of Chemistry.Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles. Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of muscle pathology in neuromuscular disorders and is well suited to characterising the conformational profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from individuals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we demonstrate that quantitative âconformational fingerprintingâ can be used to identify changes in protein folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested a significant reduction in Îą-helix structures, with concomitant increases in β-sheet and, to a lesser extent, nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders
Male reproduction in spinal muscular atrophy (SMA) and the potential impact of oral survival of motor neuron 2 (SMN2) pre-mRNA splicing modifiers
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene resulting in reduced levels of SMN protein. SMN protein is produced by cells throughout the body, and evidence suggests that low SMN protein can have systemic implications, including in male reproductive organs. However, a paucity of research exists on this important topic. This article will discuss findings from non-clinical studies on the role of SMN in the male reproductive system; additionally, real-world observational reports of individuals with SMA will be examined. Furthermore, we will review the non-clinical reproductive findings of risdiplam, a small-molecule SMN2 splicing modifier approved for the treatment of SMA, which has widespread distribution in both the central nervous system and peripheral organs. Specifically, the available non-clinical evidence of the effect of risdiplam on male reproductive organs and spermatogenesis is examined. Lastly, the article will highlight available capabilities to assess male fertility as well as the advanced reproductive technologies utilized to treat male infertility. This article demonstrates the need for further research to better understand the impacts of SMA on male fertility and reproduction
A single-sensor approach to quantify gait in patients with hereditary spastic paraplegia
Hereditary spastic paraplegia (HSP) is characterised by progressive lower-limb spasticity and weakness resulting in ambulation difficulties. During clinical practice, walking is observed and/or assessed by timed 10-metre walk tests; time, feasibility, and methodological reliability are barriers to detailed characterisation of patientsâ walking abilities when instrumenting this test. Wearable sensors have the potential to overcome such drawbacks once a validated approach is available for patients with HSP. Therefore, while limiting patientsâ and assessorsâ burdens, this study aims to validate the adoption of a single lower-back wearable inertial sensor approach for step detection in HSP patients; this is the first essential algorithmic step in quantifying most gait temporal metrics. After filtering the 3D acceleration signal based on its smoothness and enhancing the step-related peaks, initial contacts (ICs) were identified as positive zero-crossings of the processed signal. The proposed approach was validated on thirteen individuals with HSP while they performed three 10-metre tests and wore pressure insoles used as a gold standard. Overall, the single-sensor approach detected 794 ICs (87% correctly identified) with high accuracy (median absolute errors (mae): 0.05 s) and excellent reliability (ICC = 1.00). Although about 12% of the ICs were missed and the use of walking aids introduced extra ICs, a minor impact was observed on the step time quantifications (mae 0.03 s (5.1%), ICC = 0.89); the use of walking aids caused no significant differences in the average step time quantifications. Therefore, the proposed single-sensor approach provides a reliable methodology for step identification in HSP, augmenting the gait information that can be accurately and objectively extracted from patients with HSP during their clinical assessment
Rapid identification of human muscle disease with fibre optic Raman spectroscopy
The diagnosis of muscle disorders (âmyopathiesâ) can be challenging and new biomarkers of disease are required to enhance clinical practice and research. Despite advances in areas such as imaging and genomic medicine, muscle biopsy remains an important but time-consuming investigation. Raman spectroscopy is a vibrational spectroscopy application that could provide a rapid analysis of muscle tissue, as it requires no sample preparation and is simple to perform. Here, we investigated the feasibility of using a miniaturised, portable fibre optic Raman system for the rapid identification of muscle disease. Samples were assessed from 27 patients with a final clinico-pathological diagnosis of a myopathy and 17 patients in whom investigations and clinical follow-up excluded myopathy. Multivariate classification techniques achieved accuracies ranging between 71â77%. To explore the potential of Raman spectroscopy to identify different myopathies, patients were subdivided into mitochondrial and non-mitochondrial myopathy groups. Classification accuracies were between 74â89%. Observed spectral changes were related to changes in protein structure. These data indicate fibre optic Raman spectroscopy is a promising technique for the rapid identification of muscle disease that could provide real time diagnostic information. The application of fibre optic Raman technology raises the prospect of in vivo bedside testing for muscle diseases which would significantly streamline the diagnostic pathway of these disorders
Rapid identification of human muscle disease with fibre optic Raman spectroscopy
The diagnosis of muscle disorders (âmyopathiesâ) can be challenging and new biomarkers of disease are required to enhance clinical practice and research. Despite advances in areas such as imaging and genomic medicine, muscle biopsy remains an important but time consuming investigation. Raman spectroscopy is a vibrational spectroscopy application that could provide a rapid analysis of muscle tissue, as it requires no sample preparation and is simple to perform. Here, we investigated the feasibility of using a miniaturised, portable fibre optic Raman system for the rapid identification of muscle disease. Samples were assessed from 29 patients with a final clinico-pathological diagnosis of a myopathy and 17 patients in whom investigations and clinical follow-up excluded myopathy. Multivariate classification techniques achieved accuracies ranging between 71-80%. To explore the potential of Raman spectroscopy to identify different myopathies, patients were subdivided into mitochondrial and non-mitochondrial myopathy groups. Classification accuracies were between 78 â 89%. Observed spectral changes were related to changes in protein structure. These data indicate fibre optic Raman spectroscopy is a promising technique for the rapid identification of muscle disease that could provide real time diagnostic information. The application of fibre optic Raman technology raises the prospect of in vivo bedside testing for muscle diseases which would significantly streamline the diagnostic pathway of these disorders
Adult North Star Network (ANSN): Consensus Guideline For The Standard Of Care Of Adults With Duchenne Muscular Dystrophy
There are growing numbers of adults with Duchenne Muscular Dystrophy living well into their fourth decade. These patients have complex medical needs that to date have not been addressed in the International standards of care. We sought to create a consensus based standard of care through a series of multi-disciplinary workshops with specialists from a wide range of clinical areas: Neurology, Cardiology, Respiratory Medicine, Gastroenterology, Endocrinology, Palliative Care Medicine, Rehabilitation, Renal, Anaesthetics and Clinical Psychology. Detailed reports of evidence reviewed and the consensus building process were produced following each workshop and condensed into this final document which was approved by all members of the Adult North Star Network including service users. The aim of this document is to provide a framework to improve clinical services and multi-disciplinary care for adults living with Duchenne Muscular Dystrophy
Conformational fingerprinting with Raman spectroscopy reveals protein structure as a translational biomarker of muscle pathology
Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles. Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of muscle pathology in neuromuscular disorders and is well suited to characterising the conformational profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from individuals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we demonstrate that quantitative âconformational fingerprintingâ can be used to identify changes in protein folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested a significant reduction in Îą-helix structures, with concomitant increases in β-sheet and, to a lesser extent, nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders
Adult North Star Network (ANSN): Consensus Document for Therapists Working with Adults with Duchenne Muscular Dystrophy (DMD) - Therapy Guidelines
BACKGROUND
The survival of people with Duchenne Muscular Dystrophy (DMD) significantly increased due to improvements in standards of care (SOC) [1]. Consequently, DMD has evolved from a paediatric disease to a severe, chronic, multisystem, adult condition. The published international standards of care advocate specialist multidisciplinary health monitoring through proactive, anticipatory approaches to slow down the effects of the disease and allow advanced, informed decision-making [1â3]. Therapy starts as soon as the diagnosis is made and plays a vital role in symptom management in individuals to improve function, participation and effective quality of life. Therapy interventions for management, differ depending on the setting in which the care is being provided, specifically in terms of the expertise within the teams and resources available within these settings.
People with DMD find that when they transition to adult services there is a dearth of expertise and limited access to therapy services. The survey conducted in the UK highlighted substantial differences between the care received by adults and children with the condition [2]. A large proportion of adults with DMD reported increased difficulties with access to professional physiotherapy, particularly at transition from childhood to adulthood. Additionally, having their functional abilities assessed regularly or receiving professional physiotherapy in general were both significantly more difficult to achieve within adult services in the UK. Furthermore, some of the major problems expressed by adults with DMD were mobility and transportation as well as, getting involved in leisure activities and work [3]. Therefore, while pediatric services are predominantly family-centred, after transition the paradigm of patient care changes towards individual-centred with focus on different therapy goals. Those become more tailored to the individualsâ needs, balancing quality of life and management options.This document is aimed at providing guidelines for physiotherapy, occupational therapy and speech and language considerations.
The âAdult North Star Networkâ (ANSN) was founded in 2015 to advance care of adults with DMD living in the UK and to develop a prospective natural history database. There are currently 28 adult centres within the network, caring for at least 700 DMD patients. Transition age is varied depending on services and is generally between the ages of 16 to 18. There is a wide range of severity affecting people with DMD transitioned to adult services, those who are steroid naive will have been permanent wheelchair users for many years and have profound muscle weakness. On the other hand, steroid treated patients will most commonly have good upper limb function, and some maybe ambulant at the time of transition. Additionally the specific type of genetic mutation, compliance to therapy and environmental factors may play a role in disease progression and presentation at transition.
The aim of these guidelines is to support therapists working with adults with DMD with little or no experience to assist their clinical practice. Whilst the recommendations can be adopted by other health care systems in the world, we appreciate it will depend on resource availability
- âŚ