55 research outputs found
Exchanging uncertainty: interoperable geostatistics?
Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture
The effect of acquisition error and level of detail on the accuracy of spatial analyses
There has been a great deal of research about errors in geographic information and how they affect spatial analyses. A typical GIS process introduces various types of errors at different stages, and such errors usually propagate into errors in the result of a spatial analysis. However, most studies consider only a single error type thus preventing the understanding of the interaction and relative contributions of different types of errors. We focus on the level of detail (LOD) and positional error, and perform a multiple error propagation analysis combining both types of error. We experiment with three spatial analyses (computing gross volume, envelope area, and solar irradiation of buildings) performed with procedurally generated 3D city models to decouple and demonstrate the magnitude of the two types of error, and to show how they individually and jointly propagate to the output of the employed spatial analysis. The most notable result is that in the considered spatial analyses the positional error has a much higher impact than the LOD. As a consequence, we suggest that it is pointless to acquire geoinformation of a fine LOD if the acquisition method is not accurate, and instead we advise focusing on the accuracy of the data.Urban Data Scienc
Recommended from our members
A numerical method to account for distance in a farmer's willingness to pay for land
Land transactions between farmers are responsible for landscape changes in rural areas. The price a farmer is willing to pay (WTP) for vacant land depends on the distance of the parcel to the farmstead. Detailed quantitative knowledge of this WTP– distance relationship is of utmost importance for accurate modelling of land markets, and for the design and implementation of effective and robust land consolidation schemes. Practical experience suggests, however that it is not particularly easy to back out the WTP–distance relationship from empirical transaction data. Here, we present a novel statistical framework to help quantify the relationship between a farmer's WTP and the distance of his/her farmstead to the vacant parcel. We describe a land market with a simple statistical model and simulate an artificial archive of land transactions via Monte Carlo sampling. The parameters of our virtual market are estimated from a historical archive of land transactions in the Province of Gelderland The Netherlands, using minimization of the divergence (relative entropy) between the observed and simulated joint distributions of distance and transaction price. A reasonable agreement was observed between the observed and simulated bivariate distributions of distance and transaction price. Our results demonstrate that for short distances (500–1000m) any additional metre distance reduces the WTP by about 60 € ha-1. The impact of distance on WTP gradually levels off with larger distance: beyond 5 km the effect has reduced to less than 0.5 € ha-
Not Available
Not AvailableCharacterization of soil water retention, e.g., water content at field capacity (FC) and permanent wilting point (PWP) over a landscape plays a key role in efficient utilization of available scarce water resources in dry land agriculture; however, direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India (N=370) was used to develop PTFs. The developed PTFs were tested in two independent datasets from arid regions of India (N=36) and an arid region of USA (N=1789). While testing these PTFs using independent data from India, root mean square error (RMSE) was found to be 2.65 and 1.08 for FC and PWP, respectively, whereas for most of the tested ‘established’ PTFs, the RMSE was >3.41 and >1.15, respectively. Performance of the developed PTFs from the independent dataset from USA was comparable with estimates derived from ‘established’ PTFs. For wide applicability of the developed PTFs, a user-friendly soil moisture calculator was developed. The PTFs developed in this study may be quite useful to farmers for scheduling irrigation water as per soil type.Not Availabl
- …