22 research outputs found
Phantom-based evaluation of dose exposure of ultrafast combined kV-MV-CBCT towards clinical implementation for IGRT of lung cancer
Purpose: Combined ultrafast 90\ub0+90\ub0 kV-MV-CBCT within single breath-hold of 15s has high clinical potential for accelerating imaging for lung cancer patients treated with deep inspiration breath-hold (DIBH). For clinical feasibility of kV-MV-CBCT, dose exposure has to be small compared to prescribed dose. In this study, kV-MV dose output is evaluated and compared to clinically-established kV-CBCT. Methods: Accurate dose calibration was performed for kV and MV energy; beam quality was determined. For direct comparison of MV and kV dose output, relative biological effectiveness (RBE) was considered. CT dose index (CTDI) was determined and measurements in various representative locations of an inhomogeneous thorax phantom were performed to simulate the patient situation. Results: A measured dose of 20.5mGE (Gray-equivalent) in the target region was comparable to kV-CBCT (31.2mGy for widely-used, and 9.1mGy for latest available preset), whereas kVMV spared healthy tissue and reduced dose to 6.6mGE (30%) due to asymmetric dose distribution. The measured weighted CTDI of 12mGE for kV-MV lay in between both clinical presets. Conclusions: Dosimetric properties were in agreement with established imaging techniques, whereas exposure to healthy tissue was reduced. By reducing the imaging time to a single breathhold of 15s, ultrafast combined kV-MV CBCT shortens patient time at the treatment couch and thus improves patient comfort. It is therefore usable for imaging of hypofractionated lung DIBH patients
Cross Sectional Analysis of Impact of Seasonal Changes on Excimer Laser Ablation Performance on Polymethyl Methacrylate (PMMA)
Seasonal changes and varying degree of corneal hydration has been linked to excimer laser corneal ablation rates. The use of PMMA as a calibration material in refractive lasers is well established. However, PMMA ablation may be equally affected by seasonal variations in temperature and humidity, in turn affecting the calibration process. The aim of this work is to analyze the effect of seasonal changes in PMMA performance using SCHWIND AMARIS laser system. PET and PMMA ablations conducted in climate-controlled environment with 826 consecutive AMARIS systems manufactured over 6 years were retrospectively analyzed. Lasers were stratified depending on seasons and months of the year. Metrics like single laser pulse fluence, nominal number of laser pulses, mean performance, standard deviation, and technical performance of system were compared to global average values. Cyclic winterâsummer variation was confirmed with seasons winter and summer showing statistically significant variations with respect to global values. Metric technical performance showed deeper PMMA ablation performance in summertime, with maximum seasonal deviation of 6%. Results were consistently confirmed in seasonal as well as monthly analyses. These findings could help minimize variance among laser systems by implementing compensation factors depending on seasons such that laser systems installed worldwide follow the same trend line of variation
Method for assessing the impact of residual roughness after corneal ablation simulated as random and filtered noise in polychromatic vision
Purpose: Despite theoretical models for achieving laser-based ablation smoothness, methods do not yet exist for assessing the impact of residual roughness after corneal ablation, on retinal polychromatic vision. We developed a method and performed an exploratory study to qualitatively and quantitatively analyze the impact of varying degree of corneal roughness simulated through white and filtered noise, on the retinal image. Methods: A preliminary version of the Indiana Retinal Image Simulator (IRIS) [Jaskulski M., Thibos L., Bradley A., Kollbaum P., et al. (2019) IRIS â Indiana Retinal Image Simulator. https://blogs.iu.edu/corl/iri
Automated ultrafast kilovoltageâmegavoltage cone-beam CT for image guided radiotherapy of lung cancer: System description and real-time results
Purpose: To establish a fully automated kV-MV CBCT imaging method on a clinical linear accelerator that allows image acquisition of thoracic targets for patient positioning within one breath-hold (âŒ15 s) under realistic clinical conditions. Methods and materials: Our previously developed FPGA-based hardware unit which allows synchronized kV-MV CBCT projection acquisition is connected to a clinical linear accelerator system via a multi-pin switch; i.e. either kV-MV imaging or conventional clinical mode can be selected. An application program was developed to control the relevant linac parameters automatically and to manage the MV detector readout as well as the gantry angle capture for each MV projection. The kV projections are acquired with the conventional CBCT system. GPU-accelerated filtered backprojection is performed separately for both data sets. After appropriate grayscale normalization both modalities are combined and the final kV-MV volume is re-imported in the CBCT system to enable image matching. To demonstrate adequate geometrical accuracy of the novel imaging system the Penta-Guide phantom QA procedure is performed. Furthermore, a human plastinate and different tumor shapes in a thorax phantom are scanned. Diameters of the known tumor shapes are measured in the kV-MV reconstruction. Results: An automated kV-MV CBCT workflow was successfully established in a clinical environment. The overall procedure, from starting the data acquisition until the reconstructed volume is available for registration, requires âŒ90 s including 17 s acquisition time for 100° rotation. It is very simple and allows target positioning in the same way as for conventional CBCT. Registration accuracy of the QA phantom is within ±1 mm. The average deviation from the known tumor dimensions measured in the thorax phantom was 0.7 mm which corresponds to an improvement of 36% compared to our previous kV-MV imaging system. Conclusions: Due to automation the kV-MV CBCT workflow is speeded up by a factor of >10 compared to the manual approach. Thus, the system allows a simple, fast and reliable imaging procedure and fulfills all requirements to be successfully introduced into the clinical workflow now, enabling single-breath-hold volume imaging
Recommended from our members
Optimal parameters for clinical implementation of breast cancer patient setup using Varian DTS software
Digital tomosynthesis (DTS) was evaluated as an alternative to coneâbeam computed tomography (CBCT) for patient setup. DTS is preferable when there are constraints with setup time, gantryâcouch clearance, and imaging dose using CBCT. This study characterizes DTS data acquisition and registration parameters for the setup of breast cancer patients using nonclinical Varian DTS software. DTS images were reconstructed from CBCT projections acquired on phantoms and patients with surgical clips in the target volume. A shiftâandâadd algorithm was used for DTS volume reconstructions, while automated crossâcorrelation matches were performed within Varian DTS software. Triangulation on two short DTS arcs separated by various angular spread was done to improve 3D registration accuracy. Software performance was evaluated on two phantoms and ten breast cancer patients using the registration result as an accuracy measure; investigated parameters included arc lengths, arc orientations, angular separation between two arcs, reconstruction slice spacing, and number of arcs. The shifts determined from DTSâtoâCT registration were compared to the shifts based on CBCTâtoâCT registration. The difference between these shifts was used to evaluate the software accuracy. After findings were quantified, optimal parameters for the clinical use of DTS technique were determined. It was determined that at least two arcs were necessary for accurate 3D registration for patient setup. Registration accuracy of 2 mm was achieved when the reconstruction arc length was > 5° for clips with HU â„ 1000°; larger arc length (â„ 8°) was required for very low HU clips. An optimal arc separation was found to be â„ 20° and optimal arc length was 10°. Registration accuracy did not depend on DTS slice spacing. DTS image reconstruction took 10â30 seconds and registration took less than 20 seconds. The performance of Varian DTS software was found suitable for the accurate setup of breast cancer patients. Optimal data acquisition and registration parameters were determined. PACS numbers: 87.57.âs, 87.57.nf, 87.57.n
Reliability of transcutaneous measurement of renal function in various strains of conscious mice.
Measuring renal function in laboratory animals using blood and/or urine sampling is not only labor-intensive but puts also a strain on the animal. Several approaches for fluorescence based transcutaneous measurement of the glomerular filtration rate (GFR) in laboratory animals have been developed. They allow the measurement of GFR based on the elimination kinetics of fluorescent exogenous markers. None of the studies dealt with the reproducibility of the measurements in the same animals. Therefore, the reproducibility of a transcutaneous GFR assessment method was investigated using the fluorescent renal marker FITC-Sinistrin in conscious mice in the present study. We performed two transcutaneous GFR measurements within three days in five groups of mice (Balb/c, C57BL/6, SV129, NMRI at 3-4 months of age, and a group of 24 months old C57BL/6). Data were evaluated regarding day-to-day reproducibility as well as intra- and inter-strain variability of GFR and the impact of age on these parameters. No significant differences between the two subsequent GFR measurements were detected. Fastest elimination for FITC-Sinistrin was detected in Balb/c with significant differences to C57BL/6 and SV129 mice. GFR decreased significantly with age in C57BL/6 mice. Evaluation of GFR in cohorts of young and old C57BL/6 mice from the same supplier showed high consistency of GFR values between groups. Our study shows that the investigated technique is a highly reproducible and reliable method for repeated GFR measurements in conscious mice. This gentle method is easily used even in old mice and can be used to monitor the age-related decline in GFR
Smart Radiation Therapy Biomaterials
Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to âsmartâ RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications
La Charente
14 octobre 18841884/10/14 (A13,N5584)-1884/10/14.Appartient Ă lâensemble documentaire : PoitouCh