13,410 research outputs found
Star-shaped Local Density of States around Vortices in a Type II Superconductor
The electronic structure of vortices in a type II superconductor is analyzed
within the quasi-classical Eilenberger framework. The possible origin of a
sixfold ``star'' shape of the local density of states, observed by scanning
tunneling microscope experiments on NbSe, is examined in the light of the
three effects; the anisotropic pairing, the vortex lattice, and the anisotropic
density of states at the Fermi surface. Outstanding features of split parallel
rays of this star are well explained in terms of an anisotropic -wave
pairing. This reveals a rich internal electronic structure associated with a
vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques
Local density of states in the vortex lattice in a type II superconductor
Local density of states (LDOS) in the triangular vortex lattice is
investigated based on the quasi-classical Eilenberger theory. We consider the
case of an isotropic s-wave superconductor with the material parameter
appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the
LDOS shows cylindrical structure around a vortex core. On the other hand, at a
high field where the core regions substantially overlap each other, the LDOS is
sixfold star-shaped structure due to the vortex lattice effect. The orientation
of the star coincides with the experimental data of the scanning tunneling
microscopy. That is, the ray of the star extends toward the nearest-neighbor
(next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure
Polarization fluctuations in vertical cavity surface emitting lasers: a key to the mechanism behind polarization stability
We investigate the effects of the electron-hole spin dynamics on the
polarization fluctuations in the light emitted from a vertical cavity surface
emitting laser (VCSEL). The Langevin equations are derived based on a rate
equation model including birefringence, dichroism, and two carrier density
pools seperately coupled to right and left circular polarization. The results
show that the carrier dynamics phase lock the polarization fluctuations to the
laser mode. This is clearly seen in the difference between fluctuations in
ellipticity and fluctuations in polarization direction. Seperate measurements
of the polarization fluctuations in ellipticity and in polarization direction
can therefore provide quantitative information on the non-linear contribution
of the carrier dynamics to polarization stability in VCSELs.Comment: 6 pages RevTex and 3 figures, to be published in Quantum and
Semiclassical Optics, minor changes to the discussion of timescale
Mixed-State Quasiparticle Spectrum for d-wave Superconductors
Controversy concerning the pairing symmetry of high- materials has
motivated an interest in those measurable properties of superconductors for
which qualitative differences exist between the s-wave and d-wave cases. We
report on a comparison between the microscopic electronic properties of d-wave
and s-wave superconductors in the mixed state. Our study is based on
self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes
equations for phenomenological BCS models which have s-wave and d-wave
condensates in the absence of a magnetic field. We discuss differences between
the s-wave and the d-wave local density-of-states, both near and away from
vortex cores. Experimental implications for both scanning-tunneling-microscopy
measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques
Low-lying Quasiparticle Excitations around a Vortex Core in Quantum Limit
Focusing on a quantum-limit behavior, we study a single vortex in a clean
s-wave type-II superconductor by self-consistently solving the Bogoliubov-de
Gennes equation. The discrete energy levels of the vortex bound states in the
quantum limit is discussed. The vortex core radius shrinks monotonically up to
an atomic-scale length on lowering the temperature T, and the shrinkage stops
to saturate at a lower T. The pair potential, supercurrent, and local density
of states around the vortex exhibit Friedel-like oscillations. The local
density of states has particle-hole asymmetry induced by the vortex. These are
potentially observed directly by STM.Comment: 4 pages, 6 figure
Polariton condensation with localised excitons and propagating photons
We estimate the condensation temperature for microcavity polaritons, allowing
for their internal structure. We consider polaritons formed from localised
excitons in a planar microcavity, using a generalised Dicke model. At low
densities, we find a condensation temperature T_c \propto \rho, as expected for
a gas of structureless polaritons. However, as T_c becomes of the order of the
Rabi splitting, the structure of the polaritons becomes relevant, and the
condensation temperature is that of a B.C.S.-like mean field theory. We also
calculate the excitation spectrum, which is related to observable quantities
such as the luminescence and absorption spectra.Comment: 5 pages, 4 figures, Corrected typos, replaced figure
Effects of gap anisotropy upon the electronic structure around a superconducting vortex
An isolated single vortex is considered within the framework of the
quasiclassical theory. The local density of states around a vortex is
calculated in a clean type II superconductor with an anisotropy. The anisotropy
of a superconducting energy gap is crucial for bound states around a vortex. A
characteristic structure of the local density of states, observed in the
layered hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy
(STM), is well reproduced if one assumes an anisotropic s-wave gap in the
hexagonal plane. The local density of states (or the bound states) around the
vortex is interpreted in terms of quasiparticle trajectories to facilitate an
understanding of the rich electronic structure observed in STM experiments. It
is pointed out that further fine structures and extra peaks in the local
density of states should be observed by STM.Comment: 11 pages, REVTeX; 20 PostScript figures; An Animated GIFS file for
the star-shaped vortex bound states is available at
http://mp.okayama-u.ac.jp/~hayashi/vortex.htm
Obstacle avoidance during human walking: H-reflex modulation during motor learning
Abstract.: The goal of this study was to investigate changes of H-reflex amplitudes during a motor learning task. Subjects with reduced vision were instructed to step over an obstacle on a treadmill as low as possible, while the soleus H-reflex was elicited. Acoustic warning and feedback signals about performance were provided. Performance improvement was associated with a decrease of muscle activity, needed to step over the obstacle (rectus femoris, biceps femoris, tibialis anterior and gastrocnemius medialis muscles), and of foot clearance, while joint angle trajectories from knee and ankle became more stable. The experiment consisted of five runs, three with normal treadmill walking and two with randomly stepping over the obstacle (100 times). H-reflexes were elicited at early and late stance phase before stepping over the obstacle. H/M ratio, latency and duration were determined. The values of these measures were calculated for the onset and end of a run and their course over time was evaluated using a correlation coefficient. The largest adaptations with a significant increase of reflex amplitude occurred during the first obstacle run. This increase lasted only briefly and the reflex amplitudes decreased to their previous values. During the later obstacle run, no H-reflex modulation occurred. It is concluded that a motor learning task causes adaptational effects not only on performance, but also on H-reflex responses. The results indicate that most of the modulation of H-reflexes is probably due to supraspinal influences on reflex transmission. The observations made are probably less specific for this motor task (stepping over the obstacle), but rather associated with the increased attention required by the motor learning task during the first obstacle ru
Magnetic heat conductivity in : linear temperature dependence
We present experimental results for the thermal conductivity of the
pseudo 2-leg ladder material . The strong buckling of the ladder
rungs renders this material a good approximation to a Heisenberg-chain.
Despite a strong suppression of the thermal conductivity of this material in
all crystal directions due to inherent disorder, we find a dominant magnetic
contribution along the chain direction.
is \textit{linear} in temperature, resembling the
low-temperature limit of the thermal Drude weight of the
Heisenberg chain. The comparison of and
yields a magnetic mean free path of \AA, in good agreement with magnetic measurements.Comment: appears in PR
- …