191 research outputs found
A Robust and Reliable Test to Measure Stereopsis in the Clinic
yesPurpose: The purpose of this study was to develop a convenient test of stereopsis in the clinic that is both robust and reliable and capable of providing a measure of variability necessary to make valid comparisons between measurements obtained at different occasions or under different conditions.
Methods: Stereo acuity was measured based on principles derived from the laboratory measurement of stereopsis (i.e., staircase method). Potential premeasurement compensations are described if there is a significant degree of ocular misalignment, reduced visual acuity, or aniseikonia. Forty-six adults at McGill University, 44 adults at Auckland University, and 51 adults from the University of Bradford, with an age range of 20 to 65 years old and normal or corrected-to-normal vision participated in this study.
Results: Stereo acuity within this normal population was widely distributed, with a significant percentage (28%) of the population with only coarse stereo (>300 arc seconds). Across subjects, the SD was approximately 25% of the mean. Measurements at two different times were strongly (r = 0.79) and significantly (P < 0.001) correlated, with little to no significant (P = 0.79) bias (0.01) between test and retest measures of stereopsis.
Conclusions: The application enables measurements over the wide disparity range and not just at the finest disparities. In addition, it allows changes in stereopsis of the order of 1.9 to be statistically distinguished
Automated Detection of EUV Polar Coronal Holes During Solar Cycle 23
A new method for automated detection of polar coronal holes is presented.
This method, called perimeter tracing, uses a series of 171, 195, and 304 \AA\
full disk images from the Extreme ultraviolet Imaging Telescope (EIT) on SOHO
over solar cycle 23 to measure the perimeter of polar coronal holes as they
appear on the limbs. Perimeter tracing minimizes line-of-sight obscurations
caused by the emitting plasma of the various wavelengths by taking measurements
at the solar limb. Perimeter tracing also allows for the polar rotation period
to emerge organically from the data as 33 days. We have called this the Harvey
rotation rate and count Harvey rotations starting 4 January 1900. From the
measured perimeter, we are then able to fit a curve to the data and derive an
area within the line of best fit. We observe the area of the northern polar
hole area in 1996, at the beginning of solar cycle 23, to be about 4.2% of the
total solar surface area and about 3.6% in 2007. The area of the southern polar
hole is observed to be about 4.0% in 1996 and about 3.4% in 2007. Thus, both
the north and south polar hole areas are no more than 15% smaller now than they
were at the beginning of cycle 23. This compares to the polar magnetic field
measured to be about 40% less now than it was a cycle ago.Comment: 18 pagers, 7 figures, accepted to Solar Physic
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
Model-independent search for CP violation in D0âKâK+ÏâÏ+ and D0âÏâÏ+Ï+Ïâ decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states KâK+ÏâÏ+ and ÏâÏ+Ï+Ïâ is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fbâ1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the KâK+ÏâÏ+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the ÏâÏ+Ï+Ïâ final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Branching fraction and CP asymmetry of the decays B+âK0SÏ+ and B+âK0SK+
An analysis of B+ â K0
SÏ+ and B+ â K0
S K+ decays is performed with the LHCb experiment. The pp
collision data used correspond to integrated luminosities of 1 fbâ1 and 2 fbâ1 collected at centre-ofmass
energies of
â
s = 7 TeV and
â
s = 8 TeV, respectively. The ratio of branching fractions and the
direct CP asymmetries are measured to be B(B+ â K0
S K+
)/B(B+ â K0
SÏ+
) = 0.064 ± 0.009 (stat.) ±
0.004 (syst.), ACP(B+ â K0
SÏ+
) = â0.022 ± 0.025 (stat.) ± 0.010 (syst.) and ACP(B+ â K0
S K+
) =
â0.21 ± 0.14 (stat.) ± 0.01 (syst.). The data sample taken at
â
s = 7 TeV is used to search for
B+
c
â K0
S K+ decays and results in the upper limit ( fc · B(B+
c
â K0
S K+
))/( fu · B(B+ â K0
SÏ+
)) <
5.8 Ă 10â2 at 90% confidence level, where fc and fu denote the hadronisation fractions of a ÂŻb
quark
into a B+
c or a B+ meson, respectively
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be â„3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poissonâs ratio, P- and S-wave velocities, Youngâs modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+
We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471
7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+))
710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2
710-5 at 90% confidence level
- âŠ