114 research outputs found

    SeasonDepth: Cross-Season Monocular Depth Prediction Dataset and Benchmark under Multiple Environments

    Full text link
    Different environments pose a great challenge to the outdoor robust visual perception for long-term autonomous driving and the generalization of learning-based algorithms on different environmental effects is still an open problem. Although monocular depth prediction has been well studied recently, there is few work focusing on the robust learning-based depth prediction across different environments, e.g. changing illumination and seasons, owing to the lack of such a multi-environment real-world dataset and benchmark. To this end, the first cross-season monocular depth prediction dataset and benchmark SeasonDepth is built based on CMU Visual Localization dataset. To benchmark the depth estimation performance under different environments, we investigate representative and recent state-of-the-art open-source supervised, self-supervised and domain adaptation depth prediction methods from KITTI benchmark using several newly-formulated metrics. Through extensive experimental evaluation on the proposed dataset, the influence of multiple environments on performance and robustness is analyzed qualitatively and quantitatively, showing that the long-term monocular depth prediction is still challenging even with fine-tuning. We further give promising avenues that self-supervised training and stereo geometry constraint help to enhance the robustness to changing environments. The dataset is available on https://seasondepth.github.io, and benchmark toolkit is available on https://github.com/SeasonDepth/SeasonDepth.Comment: 19 pages, 13 figure

    Retrieval-based Localization Based on Domain-invariant Feature Learning under Changing Environments

    Full text link
    Visual localization is a crucial problem in mobile robotics and autonomous driving. One solution is to retrieve images with known pose from a database for the localization of query images. However, in environments with drastically varying conditions (e.g. illumination changes, seasons, occlusion, dynamic objects), retrieval-based localization is severely hampered and becomes a challenging problem. In this paper, a novel domain-invariant feature learning method (DIFL) is proposed based on ComboGAN, a multi-domain image translation network architecture. By introducing a feature consistency loss (FCL) between the encoded features of the original image and translated image in another domain, we are able to train the encoders to generate domain-invariant features in a self-supervised manner. To retrieve a target image from the database, the query image is first encoded using the encoder belonging to the query domain to obtain a domain-invariant feature vector. We then preform retrieval by selecting the database image with the most similar domain-invariant feature vector. We validate the proposed approach on the CMU-Seasons dataset, where we outperform state-of-the-art learning-based descriptors in retrieval-based localization for high and medium precision scenarios.Comment: Accepted by 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    What Matters for 3D Scene Flow Network

    Full text link
    3D scene flow estimation from point clouds is a low-level 3D motion perception task in computer vision. Flow embedding is a commonly used technique in scene flow estimation, and it encodes the point motion between two consecutive frames. Thus, it is critical for the flow embeddings to capture the correct overall direction of the motion. However, previous works only search locally to determine a soft correspondence, ignoring the distant points that turn out to be the actual matching ones. In addition, the estimated correspondence is usually from the forward direction of the adjacent point clouds, and may not be consistent with the estimated correspondence acquired from the backward direction. To tackle these problems, we propose a novel all-to-all flow embedding layer with backward reliability validation during the initial scene flow estimation. Besides, we investigate and compare several design choices in key components of the 3D scene flow network, including the point similarity calculation, input elements of predictor, and predictor & refinement level design. After carefully choosing the most effective designs, we are able to present a model that achieves the state-of-the-art performance on FlyingThings3D and KITTI Scene Flow datasets. Our proposed model surpasses all existing methods by at least 38.2% on FlyingThings3D dataset and 24.7% on KITTI Scene Flow dataset for EPE3D metric. We release our codes at https://github.com/IRMVLab/3DFlow.Comment: Accepted by ECCV 202

    Experience of management of pediatric upper gastrointestinal perforations: a series of 30 cases

    Get PDF
    BackgroundThis study aimed to explore the characteristics of pediatric upper gastrointestinal (UGI) perforations, focusing on their diagnosis and management.MethodsBetween January 2013 and December 2021, 30 children with confirmed UGI perforations were enrolled, and their clinical data were analyzed. Two groups were compared according to management options, including open surgical repair (OSR) and laparoscopic/gastroscopic repair (LR).ResultsA total of 30 patients with a median age of 36.0 months (1 day–17 years) were included in the study. There were 19 and 11 patients in the LR and OSR groups, respectively. In the LR group, two patients were treated via exploratory laparoscopy and OSR, and the other patients were managed via gastroscopic repair. Ten and three patients presented the duration from symptom onset to diagnosis within 24 h (p = 0.177) and the number of patients with hemodynamically unstable perforations was 4 and 3 in the LR and OSR groups, respectively. Simple suture or clip closure was performed in 27 patients, and laparoscopically pedicled omental patch repair was performed in two patients. There was no significant difference in operative time and length of hospital stay between the LR and OSR groups. Treatment failed in two patients because of severe sepsis and multiple organ dysfunction syndrome, including one with fungal peritonitis.ConclusionSurgery for pediatric UGI perforations should be selected according to the general status of the patient, age of the patient, duration from symptom onset, inflammation, and perforation site and size. Antibiotic administration and surgical closure remain the main strategies for pediatric UGI perforations

    lncRNA LOC100911717-targeting GAP43-mediated sympathetic remodeling after myocardial infarction in rats

    Get PDF
    ObjectiveSympathetic remodeling after myocardial infarction (MI) is the primary cause of ventricular arrhythmias (VAs), leading to sudden cardiac death (SCD). M1-type macrophages are closely associated with inflammation and sympathetic remodeling after MI. Long noncoding RNAs (lncRNAs) are critical for the regulation of cardiovascular disease development. Therefore, this study aimed to identify the lncRNAs involved in MI and reveal a possible regulatory mechanism.Methods and resultsM0- and M1-type macrophages were selected for sequencing and screened for differentially expressed lncRNAs. The data revealed that lncRNA LOC100911717 was upregulated in M1-type macrophages but not in M0-type macrophages. In addition, the lncRNA LOC100911717 was upregulated in heart tissues after MI. Furthermore, an RNA pull-down assay revealed that lncRNA LOC100911717 could interact with growth-associated protein 43 (GAP43). Essentially, immunofluorescence assays and programmed electrical stimulation demonstrated that GAP43 expression was suppressed and VA incidence was reduced after lncRNA LOC100911717 knockdown in rat hearts using an adeno-associated virus.ConclusionsWe observed a novel relationship between lncRNA LOC100911717 and GAP43. After MI, lncRNA LOC100911717 was upregulated and GAP43 expression was enhanced, thus increasing the extent of sympathetic remodeling and the frequency of VA events. Consequently, silencing lncRNA LOC100911717 could reduce sympathetic remodeling and VAs

    An investigation on constant-pressure combustion turbine cycles with water injection.

    No full text
    Thesis: M.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1945Bibliography: leaf 13.M.S.M.S. Massachusetts Institute of Technology, Department of Mechanical Engineerin
    • …
    corecore