340 research outputs found

    Little-studied arc-backarc system in the spotlight

    Get PDF
    A research cruise has documented changes in rift tectonics, volcanism, and hydrothermalism along the least studied and most enigmatic sector of a crustal complex in the southwest Pacific Ocean. Results from the longitudinal transect are expected to provide insight into processes involving the Kermadec arc-Havre backarc (KAHB) system, a continuum from oceanic spreading to continental rifting at a convergent plate boundary KAHB forms the central sector of an active, 2000-km arc-backarc complex between Tonga and New Zealand (Figure 1). The expedition also engaged in the first comprehensive survey of submarine vents in the Taupo Volcanic Zone (TVZ) at the south end of the KAHB system. Identified in the off-shore segment of TVZ were three major hydrothermal vent areas associated with late Quaternary fault structures. Data from the expedition and from other recent research in the same area addressed questions concerning the type of hydrothermal venting, magmatic heterogeneity along and across KAHB, the style of backarc rifting, and tectonic and magmatic consequences of anomalous terranes colliding with the subduction margin

    Small-size microlens characterization by multiwavelength high-resolution interference microscopy

    Get PDF
    Microlenses are widely studied in two main areas: fabrication and characterization. Nowadays, characterization draws more attention because it is difficult to apply test techniques to microlenses that are used for conventional optical systems. Especially, small microlenses on a substrate are difficult to characterize because their back focus often stays in the substrate. Here we propose immersion high-resolution interference microscopy to characterize small-size microlenses at three visible wavelengths. Test results for 20-?m-diameter microlenses are presented and discussed. We cover not only standard characterizations like wavefront investigations but also experiments of actual focus properties and chromatic behaviors

    MEASUREMENTS OF LIGHT FIELDS EMERGING FROM FINE AMPLITUDE GRATINGS

    Get PDF
    High resolution amplitude and phase of light fields emerging from a 2-μm-period amplitude grating are measured for different wavelengths. The amplitude gratings lead to highly periodic patterns caused by the Talbot effect. Such patterns reach periodicities of a fraction of the grating period. We discuss the effect of wavelengths and the number of diffraction orders participating in the imaging

    Os isotopic composition and Os and Re distribution in the active mound of the TAG hydrothermal system, Mid-Atlantic Ridge

    Get PDF
    Drilling during ODP Leg 158 took place on the active mound of the TAG hydrothermal field on the Mid-Atlantic Ridge. The dominant mineral precipitating from the hydrothermal fluid is pyrite. Its Re and Os concentration and the Os isotopic composition provide constraints on the nature of the hydrothermal fluid circulating in the TAG mound. The 187Os/186Os ratios of massive pyrite samples vary from 4.9 to 8.9. The highest ratios have been observed in the upper part of the sulfide mountain (<20 mbsf) and the lowest in the stockwork zone at ~80 mbsf. This range of Os isotopic compositions is likely the result of mixing of seawater with hydrothermal fluid. The Os concentrations are very low, ranging from 0.04 to 4.2 ppt, and the massive pyrite zone at the top of the mound is enriched in Os relative to the interior of the hydrothermal system. A hyperbolic relationship between Os isotopic composition and Os concentration reflects the systematic addition of seawater-derived Os to the hydrothermal Os component at stratigraphically shallower levels. From this relationship it is estimated that pyrite precipitating from the hydrothermal fluid contains 0.02 to 0.04 ppt Os provided the 187Os/186Os value of the fluid ranges from about 1.3 to 4.7. Because of the great mobility of Os in the high-temperature hydrothermal system, it is assumed that its partition coefficient between pyrite and hydrothermal fluid is <1. This implies that the hydrothermal fluid contains more than 0.02 ppt Os. The occurrence of anhydrite-rich lithologies at ~30–40 mbsf corroborates that seawater is penetrating the hydrothermal system and contaminating the hydrothermal fluid circulating in the upper part of the mound. This partly explains why the Os of sulfides that precipitated above this level has a strong seawater-like isotopic signature. In addition, the massive pyrite zone of the upper part of the TAG mound formed by accumulation of sulfides derived from chimneys and the fall-out material of the hydrothermal plume above the TAG field. Both sulfide components formed during mixing of seawater and hydrothermal fluid and their Os should also have a distinct seawater component. These processes, especially the entrainment of seawater, appear to control the distribution of Os and Re within the hydrothermal system. The Os enrichment in the upper part of the mound can be explained if the element is co-precipitated with sulfides or adsorbed on mineral surface during the accumulation of sulfides on the TAG mound. As a significant amount of Os can be dissolved in the hydrothermal fluid, remobilization of Os within the hydrothermal system could lead to further Os enrichment at the top of the mound but to very low Os concentrations in the stockwork zone. The Re concentrations indicate a distribution opposite to that of Os: the highest concentrations of about 60 ppb have been observed more than 15 mbsf, but the concentrations decrease from 50 to 2 ppb in samples from the top of the sulfide mound (<15 mbsf). The behavior of Re appears to be controlled by the redox conditions in the TAG hydrothermal system, which, in turn, could be determined by the relative proportions of oxidized seawater and reduced hydrothermal fluid. Deep within the mound, where the hydrothermal fluid component dominates, Re is rather immobile and becomes concentrated. In the upper part of the sulfide mound where larger quantities of seawater mix with the fluid, however, the redox potential should be more oxidizing, and Re would be more soluble and released to the ocean

    Gouy phase anomaly in photonic nanojets

    Get PDF
    We investigate in real space amplitude and phase distributions of light in photonic nanojets emerging from micrometer-sized dielectric spheres with a high-resolution interference microscope. Strong localization of light and a Gouy phase anomaly are witnessed. We show that the phase advance of photonic nanojets significantly deviates from a plane wave due to the sudden transition from a converging to a diverging wave front. Understanding such phase anomalies and verifying the presence of photonic nanojets promises to pave the way to prospective applications that may exploit the ability to localize light in spatial domains smaller than the usual resolution limit
    • …
    corecore