3,368 research outputs found
A simple approach to the correlation of rotovibrational states in four-atomic molecules
The problem of correlation between quantum states of four-atomic molecules in
different geometrical configurations is reviewed in detail. A general, still
simple rule is obtained which allows one to correlate states of a linear
four-atomic molecule with those of any kind of non-linear four-atomic molecule.Comment: 16 pages (+8 figures), Postscript (ready to print!
Quantum initial condition sampling for linearized density matrix dynamics: Vibrational pure dephasing of iodine in krypton matrices
This paper reviews the linearized path integral approach for computing time
dependent properties of systems that can be approximated using a mixed
quantum-classical description. This approach is applied to studying vibrational
pure dephasing of ground state molecular iodine in a rare gas matrix. The
Feynman-Kleinert optimized harmonic approximation for the full system density
operator is used to sample initial conditions for the bath degrees of freedom.
This extremely efficient approach is compared with alternative initial
condition sampling techniques at low temperatures where classical initial
condition sampling yields dephasing rates that are nearly an order of magnitude
too slow compared with quantum initial condition sampling and experimental
results.Comment: 20 pages and 8 figure
Reactions of C({\it a}) with selected saturated alkanes: A temperature dependence study
We present a temperature dependence study on the gas phase reactions of the
C({\it a}) radical with a selected series of saturated alkanes
(CH, CH, n-CH, i-CH, and n-CH) by
means of pulsed laser photolysis/laser-induced fluorescence technique. The
bimolecular rate constants for these reactions were obtained between 298 and
673 K. A pronounced negative temperature effect was observed for n-CH,
i-CH, and n-CH and interpreted in terms of steric hindrance
of the more reactive secondary or tertiary C-H bonds by less reactive CH
groups. Detailed analysis of our experimental results reveals quantitatively
the temperature dependence of reactivities for the primary, secondary, and
tertiary C-H bonds in these saturated alkanes and further lends support to a
mechanism of hydrogen abstraction.Comment: 26 pages, 8 figures, 1 table, 30 references; accepted to JC
Ab initio Molecular Dynamics in Adaptive Coordinates
We present a new formulation of ab initio molecular dynamics which exploits
the efficiency of plane waves in adaptive curvilinear coordinates, and thus
provides an accurate treatment of first-row elements. The method is used to
perform a molecular dynamics simulation of the CO_2 molecule, and allows to
reproduce detailed features of its vibrational spectrum such as the splitting
of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens
the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure
On-chip spectroscopy with thermally-tuned high-Q photonic crystal cavities
Spectroscopic methods are a sensitive way to determine the chemical
composition of potentially hazardous materials. Here, we demonstrate that
thermally-tuned high-Q photonic crystal cavities can be used as a compact
high-resolution on-chip spectrometer. We have used such a chip-scale
spectrometer to measure the absorption spectra of both acetylene and hydrogen
cyanide in the 1550 nm spectral band, and show that we can discriminate between
the two chemical species even though the two materials have spectral features
in the same spectral region. Our results pave the way for the development of
chip-size chemical sensors that can detect toxic substances
Relaxation paths for single modes of vibrations in isolated molecules
A numerical simulation of vibrational excitation of molecules was devised,
and used to excite computational models of common molecules into a prescribed,
pure, normal vibration mode in the ground electronic state, with varying,
controlable energy content. The redistribution of this energy (either
non-chaotic or irreversible IVR) within the isolated, free molecule is then
followed in time with a view to determining the coupling strength between
modes. This work was triggered by the need to predict the general characters of
the infrared spectra to be expected from molecules in interstellar space, after
being excited by photon absorption or reaction with a radical. It is found that
IVR from a pure normal mode is very "restricted" indeed at energy contents of
one mode quantum or so. However, as this is increased, or when the excitation
is localized, our approach allows us to isolate, describe and quantify a number
of interesting phenomena, known to chemists and in non-linear mechanics, but
difficult to demonstrate experimentally: frequency dragging, mode locking or
quenching or, still, instability near a potential surface crossing, the first
step to generalized chaos as the energy content per mode is increased.Comment: 25 pages, 15 figures; accepted by J. Atom. Phys.
Predicting and verifying transition strengths from weakly bound molecules
We investigated transition strengths from ultracold weakly bound 41K87Rb
molecules produced via the photoassociation of laser-cooled atoms. An accurate
potential energy curve of the excited state (3)1Sigma+ was constructed by
carrying out direct potential fit analysis of rotational spectra obtained via
depletion spectroscopy. Vibrational energies and rotational constants extracted
from the depletion spectra of v'=41-50 levels were combined with the results of
the previous spectroscopic study, and they were used for modifying an ab initio
potential. An accuracy of 0.14% in vibrational level spacing and 0.3% in
rotational constants was sufficient to predict the large observed variation in
transition strengths among the vibrational levels. Our results show that
transition strengths from weakly bound molecules are a good measure of the
accuracy of an excited state potential.Comment: 7 pages, 7 figure
Molecular Dipolar Crystals as High Fidelity Quantum Memory for Hybrid Quantum Computing
We study collective excitations of rotational and spin states of an ensemble
of polar molecules, which are prepared in a dipolar crystalline phase, as a
candidate for a high fidelity quantum memory. While dipolar crystals are formed
in the high density limit of cold clouds of polar molecules under 1D and 2D
trapping conditions, the crystalline structure protects the molecular qubits
from detrimental effects of short range collisions. We calculate the lifetime
of the quantum memory by identifying the dominant decoherence mechanisms, and
estimate their effects on gate operations, when a molecular ensemble qubit is
transferred to a superconducting strip line cavity (circuit QED). In the case
rotational excitations coupled by dipole-dipole interactions we identify
phonons as the main limitation of the life time of qubits. We study specific
setups and conditions, where the coupling to the phonon modes is minimized.
Detailed results are presented for a 1D dipolar chain
Dynamics of Bulk vs. Nanoscale WS_2: Local Strain and Charging Effects
We measured the infrared vibrational properties of bulk and nanoparticle
WS in order to investigate the structure-property relations in these novel
materials. In addition to the symmetry-breaking effects of local strain,
nanoparticle curvature modifies the local charging environment of the bulk
material. Performing a charge analysis on the \emph{xy}-polarized E
vibrational mode, we find an approximate 1.5:1 intralayer charge difference
between the layered 2H material and inorganic fullerene-like (IF)
nanoparticles. This effective charge difference may impact the solid-state
lubrication properties of nanoscale metal dichalcogenides.Comment: 6 pages, 5 figure
- …