105 research outputs found

    A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions

    Get PDF
    Background Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed. Results Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted. Conclusions Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively

    Male antene: postupci smanjivanja izmjera i primjene

    Get PDF
    The paper presents research results in the field of small antennas obtained at the Department of Wireless Communications, Faculty of Electrical Engineering and Computing, University of Zagreb. A study comparing the application of several miniaturization techniques on a shorted patch antenna is presented. Single and dual band shorted patch antennas with notches and/or slot are introduced. A PIFA designed for application in mobile GSM terminals is described. The application of stacked shorted patches as array elements for a mobile communication base station as well as for electromagnetic field sensor is presented. The design of single and dual band folded monopoles is described. Prototypes of the presented antennas have been manufactured and their characteristics were verified by measurements.U radu su prikazani rezultati istraživanja u području malih antena ostvareni na Zavodu za Radiokomunikacije, Sveučilišta u Zagrebu Fakulteta elektrotehnike i računarstva. Prikazana je primjena više postupaka za smanjivanje izmjera skraćene mikrotrakaste antene. Opisane su izvedbe skraćenih mikrotrakastih antena s urezima i prorezom za rad u jednom i u dva frekvencijska područja. Prikazana je izvedba planarne invertirane F-antene (PIFA) za primjenu u ručnim terminalima sustava pokretnih komunikacija GSM. Višeslojne skraćene mikrotrakaste antene uporabljene su za izvedbu antenskog niza za baznu postaju sustava pokretnih komunikacija te kao elementi osjetila za mjerenje jakosti elektromagnetskog polja. Prikazana je izvedba savijenih monopolnih antena za rad u jednom te u dva frekvencijska pojasa. Izrađeni su prototipovi opisanih antena i mjerenjima su ispitane njihove osobine

    Integrated photonic-based coronagraphic systems for future space telescopes

    Full text link
    The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10^-10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.Comment: Conference Proceedings of SPIE: Techniques and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023

    Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs

    Full text link
    Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible extreme adaptive optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.Comment: SPIE Proceeding: 2023 / 12680-6

    Coronagraphic wavefront sensing with COFFEE: high spatial-frequency diversity and other news

    No full text
    International audienceThe final performance of current and future instruments dedicated to exoplanet detection and characterization is limited by intensity residuals in the scientific image plane, which originate in uncorrected optical aberrations. In order to reach very high contrasts, these aberrations needs to be compensated for. We have proposed a focal- plane wave-font sensor called COFFEE (for COronagraphic Focal-plane wave-Front Estimation for Exoplanet detection), which consists in an extension of conventional phase diversity to a coronagraphic system. In this communication, we study the extension of COFFEE to the joint estimation of the phase and the amplitude in the context of space-based coronagraphic instruments: we optimize the diversity phase in order to minimize the reconstruction error; we also propose and optimize a novel low-amplitude high-frequency diversity that should allow the phase-diverse images to still be used for science. Lastly, we perform a first experimental validation of COFFEE in the very high, space-like contrast conditions of the THD bench and show that COFFEE is able to distinguish between phase and amplitude aberrations

    Experimental validation of joint phase and amplitude wave-front sensing with coronagraphic phase diversity for high-contrast imaging

    No full text
    Context. The next generation of space-borne instruments dedicated to the direct detection of exoplanets requires unprecedented levels of wavefront control precision. Coronagraphic wavefront sensing techniques for these instruments must measure both the phase and amplitude of the optical aberrations using the scientific camera as a wavefront sensor. Aims. In this paper, we develop an extension of coronagraphic phase diversity to the estimation of the complex electric field, that is, the joint estimation of phase and amplitude. Methods. We introduced the formalism for complex coronagraphic phase diversity. We have demonstrated experimentally on the Très Haute Dynamique testbed at the Observatoire de Paris that it is possible to reconstruct phase and amplitude aberrations with a subnanometric precision using coronagraphic phase diversity. Finally, we have performed the first comparison between the complex wavefront estimated using coronagraphic phase diversity (which relies on time-modulation of the speckle pattern) and the one reconstructed by the self-coherent camera (which relies on the spatial modulation of the speckle pattern). Results. We demonstrate that coronagraphic phase diversity retrieves complex wavefront with subnanometric precision with a good agreement with the reconstruction performed using the self-coherent camera. Conclusions. This result paves the way to coronagraphic phase diversity as a coronagraphic wave-front sensor candidate for very high contrast space missions
    corecore