14,048 research outputs found
Coil planet centrifugation as a means for small particle separation
The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes
Modelling Ag-particle activation and growth in a TSI WCPC model 3785
In this work, we modelled activation and growth of silver particles in the
water-operated TSI model 3785 water condensation particle counter (WCPC).
Our objective was to investigate theoretically how various effects influence
the counting efficiency of this CPC. Coupled fluid and particle dynamic
processes were modelled with the computational fluid dynamics (CFD) code
FLUENT in combination with the Fine Particle Model (FPM) to obtain profiles
of temperature, vapour concentration, nucleation rate, and particle size. We
found that the counting efficiency of the TSI 3785 for small particles might
be affected by the presence of larger particles. Moreover, homogeneous
nucleation processes can significantly influence counting efficiency
Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure
Bundles of many fibers, with statistically distributed thresholds for
breakdown of individual fibers and where the load carried by a bursting fiber
is equally distributed among the surviving members, are considered. During the
breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, with a distribution D(Delta) of the magnitude Delta of such
avalanches. We show that there is, for certain threshold distributions, a
crossover behavior of D(Delta) between two power laws D(Delta) proportional to
Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic
behavior, and we give the condition for which the D(Delta) proportional to
Delta^(-3/2) behavior is seen. This crossover is a signal of imminent
catastrophic failure in the fiber bundle. We find the same crossover behavior
in the fuse model.Comment: 4 pages, 4 figure
Sub-milliKelvin spatial thermometry of a single Doppler cooled ion in a Paul trap
We report on observations of thermal motion of a single, Doppler-cooled ion
along the axis of a linear radio-frequency quadrupole trap. We show that for a
harmonic potential the thermal occupation of energy levels leads to Gaussian
distribution of the ion's axial position. The dependence of the spatial thermal
spread on the trap potential is used for precise calibration of our imaging
system's point spread function and sub-milliKelvin thermometry. We employ this
technique to investigate the laser detuning dependence of the Doppler
temperature.Comment: 5 pages, 4 figure
Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide
Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO),
is the first member of a new class of organometallic hybrids which adopts the
structural pattern and physical properties of classical perovskites in two
dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be
tailored by intercalation of organic donor molecules, such as
tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF),
and by the inorganic acceptor SbF. Integration of donor molecules leads to
a more insulating behavior of poly-MTO, whereas SbF insertion does not
cause any significant change in the resistivity. The resistivity data of pure
poly-MTO is remarkably well described by a two-dimensional electron system.
Below 38 K an unusual resistivity behavior, similar to that found in doped
cuprates, is observed: The resistivity initially increases approximately as
ln) before it changes into a dependence below 2 K.
As an explanation we suggest a crossover from purely two-dimensional
charge-carrier diffusion within the \{ReO\} planes at high
temperatures to three-dimensional diffusion at low temperatures in a
disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov
correction). Furthermore, a linear positive magnetoresistance was found in the
insulating regime, which is caused by spatial localization of itinerant
electrons at some of the Re atoms, which formally adopt a electronic
configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent
magnetization and specific heat measurements in various magnetic fields suggest
that the electronic structure of poly-MTO can safely be approximated by a
purely 2D conductor.Comment: 15 pages, 16 figures, 2 table
Critical Cooperation Range to Improve Spatial Network Robustness
A robust worldwide air-transportation network (WAN) is one that minimizes the
number of stranded passengers under a sequence of airport closures. Building on
top of this realistic example, here we address how spatial network robustness
can profit from cooperation between local actors. We swap a series of links
within a certain distance, a cooperation range, while following typical
constraints of spatially embedded networks. We find that the network robustness
is only improved above a critical cooperation range. Such improvement can be
described in the framework of a continuum transition, where the critical
exponents depend on the spatial correlation of connected nodes. For the WAN we
show that, except for Australia, all continental networks fall into the same
universality class. Practical implications of this result are also discussed
Cluster counting: The Hoshen-Kopelman algorithm vs. spanning tree approaches
Two basic approaches to the cluster counting task in the percolation and
related models are discussed. The Hoshen-Kopelman multiple labeling technique
for cluster statistics is redescribed. Modifications for random and aperiodic
lattices are sketched as well as some parallelised versions of the algorithm
are mentioned. The graph-theoretical basis for the spanning tree approaches is
given by describing the "breadth-first search" and "depth-first search"
procedures. Examples are given for extracting the elastic and geometric
"backbone" of a percolation cluster. An implementation of the "pebble game"
algorithm using a depth-first search method is also described.Comment: LaTeX, uses ijmpc1.sty(included), 18 pages, 3 figures, submitted to
Intern. J. of Modern Physics
Fragmentation of a Circular Disc by Impact on a Frictionless Plate
The break-up of a two-dimensional circular disc by normal and oblique impact
on a hard frictionless plate is investigated by molecular dynamics simulations.
The disc is composed of numerous unbreakable randomly shaped convex polygons
connected together by simple elastic beams that break when bent or stretched
beyond a certain limit. It is found that for both normal and oblique impacts
the crack patterns are the same and depend solely on the normal component of
the impact velocity. Analysing the pattern of breakage, amount of damage,
fragment masses and velocities, we show the existence of a critical velocity
which separates two regimes of the impact process: below the critical point
only a damage cone is formed at the impact site (damage), cleaving of the
particle occurs at the critical point, while above the critical velocity the
disc breaks into several pieces (fragmentation). In the limit of very high
impact velocities the disc suffers complete disintegration (shattering) into
many small fragments. In agreement with experimental results, fragment masses
are found to follow the Gates-Gaudin-Schuhmann distribution (power law) with an
exponent independent of the velocity and angle of impact. The velocity
distribution of fragments exhibit an interesting anomalous scaling behavior
when changing the impact velocity and the size of the disc.Comment: submitted to J. Phys: Condensed Matter special issue on Granular
Medi
A random fiber bundle with many discontinuities in the threshold distribution
We study the breakdown of a random fiber bundle model (RFBM) with
-discontinuities in the threshold distribution using the global load sharing
scheme. In other words, different classes of fibers identified on the
basis of their threshold strengths are mixed such that the strengths of the
fibers in the class are uniformly distributed between the values
and where . Moreover, there
is a gap in the threshold distribution between and class. We
show that although the critical stress depends on the parameter values of the
system, the critical exponents are identical to that obtained in the recursive
dynamics of a RFBM with a uniform distribution and global load sharing. The
avalanche size distribution (ASD), on the other hand, shows a non-universal,
non-power law behavior for smaller values of avalanche sizes which becomes
prominent only when a critical distribution is approached. We establish that
the behavior of the avalanche size distribution for an arbitrary is
qualitatively similar to a RFBM with a single discontinuity in the threshold
distribution (), especially when the density and the range of threshold
values of fibers belonging to strongest ()-th class is kept identical in
all the cases.Comment: 6 pages, 4 figures, Accepted in Phys. Rev.
Proton-proton bremsstrahlung below and above pion-threshold: the influence of the -isobar
The proton-proton bremsstrahlung is investigated within a coupled-channel
model with the degree of freedom. The model is consistent with the
scattering up to 1 GeV and the vertex determined in the
study of pion photoproduction reactions. It is found that the
excitation can significantly improve the agreements with the at MeV. Predictions at and MeV are
presented for future experimental tests.Comment: 26 pages Revtex, 12 figures are available from the authors upon
request ([email protected]
- …
