2,783 research outputs found
Indirect and direct relations between aerobic fitness, physical activity, and academic achievement in elementary school students
BACKGROUND: There is evidence to suggest that increasing physical activity (PA) improves academic achievement (AA) in children and that aerobic fitness is associated with both cognitive function and AA. However, it is not known how these variables are interrelated and analyses with adequate control for socioeconomic variables are needed. It was hypothesized that PA would not directly affect AA but would have an indirect effect on AA through its effect on aerobic fitness. The purpose of this study was to test this hypothesized mediation using path analysis. METHODS: Cross-sectional data including AA, aerobic fitness, and daily PA assessed through accelerometry were collected from a large sample (N = 687) of 2nd and 3rd grade students. Demographic data were assessed via parent self-report. RESULTS: A total of 401 students wore the accelerometer for at least 10 hours on 3 days or more and were included in the final path analysis to evaluate potential relations among PA (predictor), aerobic fitness (mediator), and WIAT-III subtest standard scores (outcomes; i.e., reading, spelling, and mathematics). Findings showed a direct effect of PA on aerobic fitness (b = 0.009, p < 0.001) and an indirect effect (mediation) of PA via fitness on math achievement (b = 0.003, p < 0.01) after controlling for student’s grade, gender, body mass index, mother’s education level, and household income, as well as intraclass correlations among classes and schools. Neither PA nor aerobic fitness were correlated with WIAT-III reading or spelling scores. CONCLUSIONS: Mediation analysis indicated that PA exerted an influence on math achievement through its effects on aerobic fitness but was not associated with reading or spelling achievement scores
BSSN in Spherical Symmetry
The BSSN (Baumgarte-Shapiro-Shibata-Nakamura) formulation of the Einstein
evolution equations is written in spherical symmetry. These equations can be
used to address a number of technical and conceptual issues in numerical
relativity in the context of a single Schwarzschild black hole. One of the
benefits of spherical symmetry is that the numerical grid points can be tracked
on a Kruskal--Szekeres diagram. Boundary conditions suitable for puncture
evolution of a Schwarzschild black hole are presented. Several results are
shown for puncture evolution using a fourth--order finite difference
implementation of the equations.Comment: This is the final version to be published in CQG. It contains much
more information and detail than the original versio
Effect of substrate thermal resistance on space-domain microchannel
In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler
Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue
E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and
quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining
E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during
disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53
or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments
Gas-Phase Oxygen Gradients in Strongly Interacting Galaxies: I. Early-Stage Interactions
A consensus is emerging that interacting galaxies show depressed nuclear gas
metallicities compared to isolated star-forming galaxies. Simulations suggest
that this nuclear underabundance is caused by interaction-induced inflow of
metal-poor gas, and that this inflow concurrently flattens the radial
metallicity gradients in strongly interacting galaxies. We present
metallicities of over 300 HII regions in a sample of 16 spirals that are
members of strongly interacting galaxy pairs with mass ratio near unity. The
deprojected radial gradients in these galaxies are about half of those in a
control sample of isolated, late-type spirals. Detailed comparison of the
gradients with simulations show remarkable agreement in gradient distributions,
the relationship between gradients and nuclear underabundances, and the shape
of profile deviations from a straight line. Taken together, this evidence
conclusively demonstrates that strongly interacting galaxies at the present day
undergo nuclear metal dilution due to gas inflow, as well as significant
flattening of their gas-phase metallicity gradients, and that current
simulations can robustly reproduce this behavior at a statistical level.Comment: Accepted for publication in Ap
Two-pion correlations in Au+Au collisions at 10.8 GeV/c per nucleon
Two-particle correlation functions for positive and negative pions have been
measured in Au+Au collisions at 10.8~GeV/c per nucleon. The data were analyzed
using one- and three-dimensional correlation functions. From the results of the
three-dimensional fit the phase space density of pions was calculated. It is
consistent with local thermal equilibrium.Comment: 5 pages RevTeX (including 3 Figures
Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing
BACKGROUND: Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. CONCLUSIONS/SIGNIFICANCE: Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing
Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy
We present measurements of the pion transverse momentum (p_t) spectra in
central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to
and including p_t=0. The data exhibit an enhanced pion yield at low p_t
compared to what is expected for a purely thermal spectral shape. This
enhancement is used to determine the Delta-resonance abundance at freeze-out.
The results are consistent with a direct measurement of the Delta-resonance
yield by reconstruction of proton-pion pairs and imply a temperature of the
system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file
Charged Particle Pseudorapidity Distributions in Au+Al, Cu, Au, and U Collisions at 10.8 AGeV/c
We present the results of an analysis of charged particle pseudorapidity
distributions in the central region in collisions of a Au projectile with Al,
Cu, Au, and U targets at an incident energy of 10.8~GeV/c per nucleon. The
pseudorapidity distributions are presented as a function of transverse energy
produced in the target or central pseudorapidity regions. The correlation
between charged multiplicity and transverse energy measured in the central
region, as well as the target and projectile regions is also presented. We give
results for transverse energy per charged particle as a function of
pseudorapidity and centrality.Comment: 31 pages + 12 figures (compressed and uuencoded by uufiles), LATEX,
Submitted to PR
- …