127 research outputs found

    Birth asphyxia as the major complication in newborns: Moving towards improved individual outcomes by prediction, targeted prevention and tailored medical care

    Get PDF
    Perinatal Asphyxia—oxygen deficit at delivery—can lead to severe hypoxic ischaemic organ damage in newborns followed by a fatal outcome or severe life-long pathologies. The severe insults often cause neurodegenerative diseases, mental retardation and epilepsies. The mild insults lead to so-called “minimal brain-damage disorders” such as attention deficits and hyperactivity, but can also be associated with the development of schizophrenia and life-long functional psychotic syndromes. Asphyxia followed by re-oxygenation can potentially lead to development of several neurodegenerative pathologies, diabetes type 2 and cancer. The task of individual prediction, targeted prevention and personalised treatments before a manifestation of the life-long chronic pathologies usually developed by newborns with asphyxic deficits, should be given the extraordinary priority in neonatology and paediatrics. Socio-economical impacts of educational measures and advanced strategies in development of robust diagnostic approaches targeted at effected molecular pathways, biomarker-candidates and potential drug-targets for tailored treatments are reviewed in the pap

    Perinatal asphyxia: CNS development and deficits with delayed onset

    Get PDF
    Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by over expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of proinflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles

    Neonatal mesenchymal stem cell treatment improves myelination impaired by global perinatal asphyxia in rats

    Get PDF
    Indexación ScopusThe effect of perinatal asphyxia (PA) on oligodendrocyte (OL), neuroinflammation, and cell viability was evaluated in telencephalon of rats at postnatal day (P)1, 7, and 14, a period char-acterized by a spur of neuronal networking, evaluating the effect of mesenchymal stem cell (MSCs)- treatment. The issue was investigated with a rat model of global PA, mimicking a clinical risk oc-curring under labor. PA was induced by immersing fetus-containing uterine horns into a water bath for 21 min (AS), using sibling-caesarean-delivered fetuses (CS) as controls. Two hours after delivery, AS and CS neonates were injected with either 5 μL of vehicle (10% plasma) or 5 × 104 MSCs into the lateral ventricle. Samples were assayed for myelin-basic protein (MBP) levels; Olig-1/Olig-2 tran-scriptional factors; Gglial phenotype; neuroinflammation, and delayed cell death. The main effects were observed at P7, including: (i) A decrease of MBP-immunoreactivity in external capsule, corpus callosum, cingulum, but not in fimbriae of hippocampus; (ii) an increase of Olig-1-mRNA levels; (iii) an increase of IL-6-mRNA, but not in protein levels; (iv) an increase in cell death, including OLs; and (v) MSCs treatment prevented the effect of PA on myelination, OLs number, and cell death. The present findings show that PA induces regional- and developmental-dependent changes on myelination and OLs maturation. Neonatal MSCs treatment improves survival of mature OLs and myelination in telencephalic white matter. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/1422-0067/22/6/327

    Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus

    Get PDF
    Exposure to early-life stress is associated with long-term alterations in brain and behavior, and may aggravate the outcome of neurological insults. This study aimed at investigating the possible interaction between maternal separation, a model of early stress, and subsequent neonatal hypoxia-ischemia on emotional behavior and markers of synaptic plasticity in hippocampus. Therefore, rat pups (N = 60) were maternally separated for a prolonged (MS 180min) or a brief (MS 15min) period during the first six postnatal days, while a control group was left undisturbed. Hypoxia-ischemia was applied to a subgroup of each rearing condition on postnatal day 7. Emotional behavior was examined at three months of age and included assessments of anxiety (elevated plus maze), depression-like behavior (forced swimming) and spontaneous exploration (open field). Synaptic plasticity was evaluated based on BDNF and synaptophysin expression in CA3 and dentate gyrus hippocampal regions. We found that neonatal hypoxia-ischemia caused increased levels of anxiety, depression-like behavior and locomotor activity (ambulation). Higher anxiety levels were also seen in maternally separated rats (MS180min) compared to non-maternally separated rats, but prolonged maternal separation prior to HI did not potentiate the HI-associated effect. No differences among the three rearing conditions were found regarding depression-like behavior or ambulation. Immunohistochemical evaluation of synaptophysin revealed that both prolonged maternal separation (MS180min) and neonatal hypoxia-ischemia significantly reduced its expression in the CA3 and dentate gyrus. Decreases in synaptophysin expression in these areas were not exacerbated in rats that were maternally separated for a prolonged period prior to HI. Regarding BDNF expression, we found a significant decrease in immunoreactivity only in the hypoxic-ischemic rats that were subjected to the prolonged maternal separation paradigm. The above findings suggest that early-life stress prior to neonatal hypoxia-ischemia leads to significant alterations in synaptic plasticity of the dorsal hippocampus during adulthood, but does not exacerbate HI-related changes in emotional behavior

    Intranasal administration of mesenchymal stem cell secretome reduces hippocampal oxidative stress, neuroinflammation and cell death, improving the behavioral outcome following perinatal asphyxia

    Get PDF
    Indexación: Scopus.PerinatalAsphyxia (PA) is a leading cause ofmotor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-ff+IFN- (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 ffC for 21 min. Thereafter, 16 ffL of MSC-S (containing 6 ffg of protein derived from 2 ff 105 preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-ffB/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia. © 2020 by the authors.https://www.mdpi.com/1422-0067/21/20/780

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia

    Get PDF
    Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120–150. Self-spotted chips containing 340 cDNAs related to the glutamate system (“glutamate chips”) were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity

    Effects of Cocaine-Kindling on the Expression of NMDA Receptors and Glutamate Levels in Mouse Brain

    Get PDF
    In the present study we examined the effects of cocaine seizure kindling on the expression of NMDA receptors and levels of extracellular glutamate in mouse brain. Quantitative autoradiography did not reveal any changes in binding of [3H] MK-801 to NMDA receptors in several brain regions. Likewise, in situ hybridization and Western blotting revealed no alteration in expression of the NMDA receptor subunits, NR1 and NR2B. Basal overflow of glutamate in the ventral hippocampus determined by microdialysis in freely moving animals also did not differ between cocaine-kindled and control groups. Perfusion with the selective excitatory amino acid transporter inhibitor, pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mM), increased glutamate overflow confirming transport inhibition. Importantly, KCl-evoked glutamate overflow under tPDC perfusion was significantly higher in cocaine-kindled mice than in control mice. These data suggest that enhancement of depolarization stimulated glutamate release may be one of the mechanisms underlying the development of increased seizure susceptibility after cocaine kindling

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats

    Get PDF
    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused significant increases in 5-HIAA/5-HT ratios on the DA-depleted side
    corecore