5,616 research outputs found
Gamma Ray Bursts: Observations and Theoretical Conjectures
Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008
Az előszerződés, mint a jövőbeli ismételt foglalkoztatás jogi keretbe foglalt ígérete
Abstract: In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer) data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain), where ALOS (Advanced Land Observing Satellite) images have been processed through a Persistent Scatterer Interferometry (PSI) technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, butRemote Sens. 2013, 5 6199 even moving, potentially referred to unmapped landslides or triggered by other kinds o
Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentin Basin (Spain) case study
A twenty-year period of severe land subsidence evolution in the Alto Guadalentin Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentin Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 +/- 4 mm for the ALOS data and of 4.8 +/- 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100-200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentin aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached. (C) 2015 Published by Elsevier B.V
Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto Guadalentín Basin (Spain)
Multi-sensor advanced DInSAR analyses have been performed and compared with
two GPS station measurements, in order to evaluate the land subsidence
evolution in a 20-year period, in the Alto Guadalentín Basin where the
highest rate of man-induced subsidence (> 10 cm yr−1) of
Europe had been detected. The control mechanisms have been examined
comparing the advanced DInSAR data with conditioning and triggering factors
(i.e. isobaths of Plio-Quaternary deposits, soft soil thickness and
piezometric level)
Localization of gravity on a de Sitter thick braneworld without scalar fields
In this work we present a simple thick braneworld model that is generated by
an intriguing interplay between a 5D cosmological constant with a de Sitter
metric induced in the 3-brane without the inclusion of scalar fields. We show
that 4D gravity is localized on this brane, provide analytic expressions for
the massive Kaluza-Klein (KK) fluctuation modes and also show that the spectrum
of metric excitations displays a mass gap. We finally present the corrections
to Newton's law due to these massive modes. This model has no naked
singularities along the fifth dimension despite the existence of a mass gap in
the graviton spectrum as it happens in thick branes with 4D Poincare symmetry,
providing a simple model with very good features: the curvature is completely
smooth along the fifth dimension, it localizes 4D gravity and the spectrum of
gravity fluctuations presents a mass gap, a fact that rules out the existence
of phenomenologically dangerous ultralight KK excitations in the model. We
finally present our solution as a limit of scalar thick branes.Comment: 11 pages in latex, no figures, title and abstract changed, a new
section and some references adde
NEXT-100 Technical Design Report (TDR). Executive Summary
In this Technical Design Report (TDR) we describe the NEXT-100 detector that
will search for neutrinoless double beta decay (bbonu) in Xe-136 at the
Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes
the design presented in our Conceptual Design Report (CDR): an
electroluminescence time projection chamber, with separate readout planes for
calorimetry and tracking, located, respectively, behind cathode and anode. The
detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or
100 kg at 10 bar. This option builds in the capability to increase the total
isotope mass by 50% while keeping the operating pressure at a manageable level.
The readout plane performing the energy measurement is composed of Hamamatsu
R11410-10 photomultipliers, specially designed for operation in low-background,
xenon-based detectors. Each individual PMT will be isolated from the gas by an
individual, pressure resistant enclosure and will be coupled to the sensitive
volume through a sapphire window. The tracking plane consists in an array of
Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged
in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner
walls of the TPC, the sapphire windows and the boards holding the MPPCs will be
coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the
light collection.Comment: 32 pages, 22 figures, 5 table
- …