23,331 research outputs found

    Relativistic gravitational collapse in comoving coordinates: The post-quasistatic approximation

    Full text link
    A general iterative method proposed some years ago for the description of relativistic collapse, is presented here in comoving coordinates. For doing that we redefine the basic concepts required for the implementation of the method for comoving coordinates. In particular the definition of the post-quasistatic approximation in comoving coordinates is given. We write the field equations, the boundary conditions and a set of ordinary differential equations (the surface equations) which play a fundamental role in the algorithm. As an illustration of the method, we show how to build up a model inspired in the well known Schwarzschild interior solution. Both, the adiabatic and non adiabatic, cases are considered.Comment: 14 pages, 11 figures; updated version to appear in Int. J. Modern Phys.

    Key polynomials for simple extensions of valued fields

    Full text link
    Let ι:KLK(x)\iota:K\hookrightarrow L\cong K(x) be a simple transcendental extension of valued fields, where KK is equipped with a valuation ν\nu of rank 1. That is, we assume given a rank 1 valuation ν\nu of KK and its extension ν\nu' to LL. Let (Rν,Mν,kν)(R_\nu,M_\nu,k_\nu) denote the valuation ring of ν\nu. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to ι\iota a countable well ordered set Q={Qi}iΛK[x]; \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; the QiQ_i are called {\bf key polynomials}. Key polynomials QiQ_i which have no immediate predecessor are called {\bf limit key polynomials}. Let βi=ν(Qi)\beta_i=\nu'(Q_i). We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if char kν=0\operatorname{char}\ k_\nu=0 then the set of key polynomials has order type at most ω\omega, while in the case char kν=p>0\operatorname{char}\ k_\nu=p>0 this order type is bounded above by ω×ω\omega\times\omega, where ω\omega stands for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519

    Collapsing Spheres Satisfying An "Euclidean Condition"

    Full text link
    We study the general properties of fluid spheres satisfying the heuristic assumption that their areas and proper radius are equal (the Euclidean condition). Dissipative and non-dissipative models are considered. In the latter case, all models are necessarily geodesic and a subclass of the Lemaitre-Tolman-Bondi solution is obtained. In the dissipative case solutions are non-geodesic and are characterized by the fact that all non-gravitational forces acting on any fluid element produces a radial three-acceleration independent on its inertial mass.Comment: 1o pages, Latex. Title changed and text shortened to fit the version to appear in Gen.Rel.Grav
    corecore