2,212 research outputs found

    Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Get PDF
    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP) for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx [NO subscript x], CO, specific VOCs, NH3 [NH subscript 3], and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx [NO subscript x] mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 [NH subscript 3] emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. Nitrogen oxides emissions for on-road heavy-duty diesel truck (HDDT) were measured near Austin, Texas, as well as in both Mexican cities, with NOy [NO subscript y] emission ratios in Austin < Mexico City < Mexicali.Mexico. Comisión Ambiental MetropolitanaNational Science Foundation (U.S.) (Grant ATM-0528227)Molina Center for Energy and the EnvironmentUniversity of Texas at AustinLatin American Scholarship Program of American Universitie

    Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston

    Get PDF
    Many recent models underpredict secondary organic aerosol (SOA) particulate matter (PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much better understood, we investigate the correlation of odd-oxygen ([Ox]≡[O3]+[NO2]) [([O subscript x] ≡ [O subscript 3] + [NO subscript 2])] and the oxygenated component of organic aerosol (OOA), which is interpreted as a surrogate for SOA. OOA and Ox [O subscript x] measured in Mexico City in 2006 and Houston in 2000 were well correlated in air masses where both species were formed on similar timescales (less than 8 h) and not well correlated when their formation timescales or location differed greatly. When correlated, the ratio of these two species ranged from 30 μg [mu g] m−3/ppm [m superscript -3 / ppm] (STP) in Houston during time periods affected by large petrochemical plant emissions to as high as 160 μg [mu g] m−3/ppm [m superscript -3 / ppm] in Mexico City, where typical values were near 120 μg [mu g] m−3/ppm [m superscript -3 / ppm]. On several days in Mexico City, the [OOA]/[Ox] [[OOA] / O subscript x]] ratio decreased by a factor of ~2 between 08:00 and 13:00 local time. This decrease is only partially attributable to evaporation of the least oxidized and most volatile components of OOA; differences in the diurnal emission trends and timescales for photochemical processing of SOA precursors compared to ozone precursors also likely contribute to the observed decrease. The extent of OOA oxidation increased with photochemical aging. Calculations of the ratio of the SOA formation rate to the Ox [O subscript x] production rate using ambient VOC measurements and traditional laboratory SOA yields are lower than the observed [OOA]/[Ox] [[OOA] / O subscript x]] ratios by factors of 5 to 15, consistent with several other models' underestimates of SOA. Calculations of this ratio using emission factors for organic compounds from gasoline and diesel exhaust do not reproduce the observed ratio. Although not successful in reproducing the atmospheric observations presented, modeling P(SOA)/P(Ox) [P (SOA) / P (O subscript x)] can serve as a useful test of photochemical models using improved formulation mechanisms for SOA.National Science Foundation (U.S.) (Grant ATM-528227)National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0513116)National Science Foundation (U.S.) (Grant ATM-0449815)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FGO2-05ER63982)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DEFGO2- 05ER63980)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FG02-08ER64627)United States. National Oceanic and Atmospheric Administration (Grant NA08OAR4310656

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    MRP3: a molecular target for human glioblastoma multiforme immunotherapy.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).</p> <p>Methods</p> <p>We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.</p> <p>Results</p> <p>Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed <it>MRP3 </it>mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined <it>MRP3</it>-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of <it>MRP3 </it>RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).</p> <p>Conclusions</p> <p>Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.</p

    Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses

    Get PDF
    Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. © 2014 Findlay et al

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Search for Single-Top-Quark Production in p-pbar Collisions at sqrt(s)=1.8 TeV

    Full text link
    We search for standard model single-top-quark production in the W-gluon fusion and W* channels using 106 pb^-1 of data from p-pbar collisions at sqrt(s)=1.8 TeV collected with the Collider Detector at Fermilab. We set an upper limit at 95% C.L. on the combined W-gluon fusion and W* single-top cross section of 14 pb, roughly six times larger than the standard model prediction. Separate 95% C.L. upper limits in the W-gluon fusion and W* channels are also determined and are found to be 13 and 18 pb, respectively.Comment: 6 pages, 2 figures; submitted to Phys. Rev. Let
    corecore