10 research outputs found

    Microwave Treatment for Cardiac Arrhythmias

    Get PDF
    NASA seeks to transfer the NASA developed microwave ablation technology, designed for the treatment of ventricular tachycardia (irregular heart beat), to industry. After a heart attack, many cells surrounding the resulting scar continue to live but are abnormal electrically; they may conduct impulses unusually slowly or fire when they would typically be silent. These diseased areas might disturb smooth signaling by forming a reentrant circuit in the muscle. The objective of microwave ablation is to heat and kill these diseased cells to restore appropriate electrical activity in the heart. This technology is a method and apparatus that provides for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In comparison with other methods that involve direct-current pulses or radio frequencies below 1 GHz, this method may prove more effective in treating ventricular tachycardia. This is because the present method provides for greater control of the location, cross-sectional area, and depth of a lesion via selection of the location and design of the antenna and the choice of microwave power and frequency

    NASA Johnson Space Center Medical Licensing Opportunities

    Get PDF
    This presentation reviews patented medical items that are available for licensing in the areas of Laboratory Technologies, Medical Devices, Medical Equipment and other technologies that are of interest to the medical community

    Avance en el diseño de un péptido bloqueador del receptor opioide kappa 2 humano

    Get PDF
    Se evaluó la posibilidad de predecir una probable estructura secundaria para el Receptor Opioide Kappa 2 humano tomando como base la secuencia de aminoácidos del Receptor Opioide Kappa 1 humano. La estructura predicha mostró ser compatible con los datos que se poseen acerca de este tipo de receptores. Con esta prueba inicial, el proyecto que tiene como objetivo principal diseñar un análogo proteico para el Receptor Opioide Kappa 2 humano, ha mostrado el nivel mínimo de viabilidad necesario para ser continuado

    Avance en el diseño de un péptido bloqueador del receptor Opioide Kappa 2 humano

    No full text
    Se evaluó la posibilidad de predecir una probable estructura secundaria para el Receptor Opioide Kappa 2 humano tomando como base la secuencia de aminoácidos del Receptor Opioide Kappa 1 humano. La estructura predicha mostró ser compatible con los datos que se poseen acerca de este tipo de receptores. Con esta prueba inicial, el proyecto que tiene como objetivo principal diseñar un análogo proteico para el Receptor Opioide Kappa 2 humano, ha mostrado el nivel mínimo de viabilidad necesario para ser continuado

    Impact of age- and gender-specific cut-off values for the fecal immunochemical test for hemoglobin in colorectal cancer screening

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore