4,466 research outputs found

    A MOSAIC of methods: Improving ortholog detection through integration of algorithmic diversity

    Full text link
    Ortholog detection (OD) is a critical step for comparative genomic analysis of protein-coding sequences. In this paper, we begin with a comprehensive comparison of four popular, methodologically diverse OD methods: MultiParanoid, Blat, Multiz, and OMA. In head-to-head comparisons, these methods are shown to significantly outperform one another 12-30% of the time. This high complementarity motivates the presentation of the first tool for integrating methodologically diverse OD methods. We term this program MOSAIC, or Multiple Orthologous Sequence Analysis and Integration by Cluster optimization. Relative to component and competing methods, we demonstrate that MOSAIC more than quintuples the number of alignments for which all species are present, while simultaneously maintaining or improving functional-, phylogenetic-, and sequence identity-based measures of ortholog quality. Further, we demonstrate that this improvement in alignment quality yields 40-280% more confidently aligned sites. Combined, these factors translate to higher estimated levels of overall conservation, while at the same time allowing for the detection of up to 180% more positively selected sites. MOSAIC is available as python package. MOSAIC alignments, source code, and full documentation are available at http://pythonhosted.org/bio-MOSAIC

    Robust forward simulations of recurrent hitchhiking

    Get PDF
    Evolutionary forces shape patterns of genetic diversity within populations and contribute to phenotypic variation. In particular, recurrent positive selection has attracted significant interest in both theoretical and empirical studies. However, most existing theoretical models of recurrent positive selection cannot easily incorporate realistic confounding effects such as interference between selected sites, arbitrary selection schemes, and complicated demographic processes. It is possible to quantify the effects of arbitrarily complex evolutionary models by performing forward population genetic simulations, but forward simulations can be computationally prohibitive for large population sizes (>105> 10^5). A common approach for overcoming these computational limitations is rescaling of the most computationally expensive parameters, especially population size. Here, we show that ad hoc approaches to parameter rescaling under the recurrent hitchhiking model do not always provide sufficiently accurate dynamics, potentially skewing patterns of diversity in simulated DNA sequences. We derive an extension of the recurrent hitchhiking model that is appropriate for strong selection in small population sizes, and use it to develop a method for parameter rescaling that provides the best possible computational performance for a given error tolerance. We perform a detailed theoretical analysis of the robustness of rescaling across the parameter space. Finally, we apply our rescaling algorithms to parameters that were previously inferred for Drosophila, and discuss practical considerations such as interference between selected sites

    Diffusion Approximations for Demographic Inference: DaDi

    Get PDF
    Models of demographic history (population sizes, migration rates, and divergence times) inferred from genetic data complement archeology and serve as null models in genome scans for selection. Most current inference methods are computationally limited to considering simple models or non-recombining data. We introduce a method based on a diffusion approximation to the joint frequency spectrum of genetic variation between populations. Our implementation, DaDi, can model up to three interacting populations and scales well to genome-wide data. We have applied DaDi to human data from Africa, Europe, and East Asia, building the most complex statistically well-characterized model of human migration out of Africa to date

    Population Genetics of Rare Variants and Complex Diseases

    Get PDF
    Identifying drivers of complex traits from the noisy signals of genetic variation obtained from high throughput genome sequencing technologies is a central challenge faced by human geneticists today. We hypothesize that the variants involved in complex diseases are likely to exhibit non-neutral evolutionary signatures. Uncovering the evolutionary history of all variants is therefore of intrinsic interest for complex disease research. However, doing so necessitates the simultaneous elucidation of the targets of natural selection and population-specific demographic history. Here we characterize the action of natural selection operating across complex disease categories, and use population genetic simulations to evaluate the expected patterns of genetic variation in large samples. We focus on populations that have experienced historical bottlenecks followed by explosive growth (consistent with most human populations), and describe the differences between evolutionarily deleterious mutations and those that are neutral. Genes associated with several complex disease categories exhibit stronger signatures of purifying selection than non-disease genes. In addition, loci identified through genome-wide association studies of complex traits also exhibit signatures consistent with being in regions recurrently targeted by purifying selection. Through simulations, we show that population bottlenecks and rapid growth enables deleterious rare variants to persist at low frequencies just as long as neutral variants, but low frequency and common variants tend to be much younger than neutral variants. This has resulted in a large proportion of modern-day rare alleles that have a deleterious effect on function, and that potentially contribute to disease susceptibility.Comment: 36 pages, 7 figure
    • …
    corecore