67 research outputs found

    From five-loop scattering amplitudes to open trees with the Loop-Tree Duality

    Full text link
    Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7^7MLT universal topology, that allow us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.Comment: 14 pages, 6 figures, 2 table

    Parton-to-kaon fragmentation revisited

    Get PDF
    We revisit the global QCD analysis of parton-to-kaon fragmentation functions at next-to-leading-order accuracy using the latest experimental information on single-inclusive kaon production in electron-positron annihilation, lepton-nucleon deep-inelastic scattering, and proton-proton collisions. An excellent description of all data sets is achieved, and the remaining uncertainties in parton-to-kaon fragmentation functions are estimated and discussed based on the Hessian method. Extensive comparisons to the results from our previous global analysis are made.Instituto de Física La Plat

    Reconstructing parton collisions with machine learning techniques

    Full text link
    Having access to the parton-level kinematics is important for understanding the internal dynamics of particle collisions. Here, we present new results aiming to an efficient reconstruction of parton collisions using machine-learning techniques. By simulating the collider events, we related experimentally-accessible quantities with the momentum fractions of the involved partons. We used photon-hadron production to exploit the cleanliness of the photon signal, including up to NLO QCD-QED corrections. Neural networks led to an outstanding reconstruction efficiency, suggesting a powerful strategy for unveiling the behaviour of the fundamental bricks of matter in high-energy collisions.Comment: 4 pages, 2 figures. Contribution to the Proceedings of the ICHEP 2022 Conferenc

    Reconstructing partonic kinematics at colliders with machine learning

    Get PDF
    In the context of high-energy physics, a reliable description of the parton-level kinematics plays a crucial role for understanding the internal structure of hadrons and improving the precision of the calculations. In proton-proton collisions, this represents a challenging task since extracting such information from experimental data is not straightforward. With this in mind, we propose to tackle this problem by studying the production of one hadron and a direct photon in proton-proton collisions, including up to Next-to-Leading Order Quantum Chromodynamics and Leading-Order Quantum Electrodynamics corrections. Using Monte-Carlo integration, we simulate the collisions and analyze the events to determine the correlations among measurable and partonic quantities. Then, we use these results to feed three different Machine Learning algorithms that allow us to find the momentum fractions of the partons involved in the process, in terms of suitable combinations of the final state momenta. Our results are compatible with previous findings and suggest a powerful application of Machine-Learning to model high-energy collisions at the partonic-level with high-precision

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore