11 research outputs found

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Charged-particle nuclear modification factors in PbPb and pPb collisions at √=sNN=5.02 TeV

    Get PDF
    The spectra of charged particles produced within the pseudorapidity window |η| < 1 at √ sNN = 5.02 TeV are measured using 404 µb −1 of PbPb and 27.4 pb−1 of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < pT < 400 GeV in pp and 0.7 < pT < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, RAA, is measured in bins of collision centrality. The RAA in the 5% most central collisions shows a maximal suppression by a factor of 7–8 in the pT region of 6–9 GeV. This dip is followed by an increase, which continues up to the highest pT measured, and approaches unity in the vicinity of pT = 200 GeV. The RAA is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS collaboration to construct the pPb nuclear modification factor, RpA, up to 120 GeV. For pT > 20 GeV, RpA exhibits weak momentum dependence and shows a moderate enhancement above unity

    Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at √s=13TeV

    No full text
    A search is presented for an excess of events with heavy-flavor quark pairs (tt¯ and bb¯) and a large imbalance in transverse momentum in data from proton–proton collisions at a center-of-mass energy of 13TeV. The data correspond to an integrated luminosity of 2.2fb-1 collected with the CMS detector at the CERN LHC. No deviations are observed with respect to standard model predictions. The results are used in the first interpretation of dark matter production in tt¯ and bb¯ final states in a simplified model. This analysis is also the first to perform a statistical combination of searches for dark matter produced with different heavy-flavor final states. The combination provides exclusions that are stronger than those achieved with individual heavy-flavor final states. © 2017, CERN for the benefit of the CMS collaboration

    Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at √s=13TeV

    No full text
    The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19fb-1. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation of the process with no parton in the final state with next-to-next-to-leading logarithm resummation and parton showering. © 2018, CERN for the benefit of the CMS collaboration

    Measurements of triple-differential cross sections for inclusive isolated-photon+jet events in p p collisions at √s=8TeV

    No full text
    Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in p p collisions at s=8 TeV as a function of photon transverse momentum (pTγ), photon pseudorapidity (ηγ), and jet pseudorapidity (ηjet). The data correspond to an integrated luminosity of 19.7fb-1 that probe a broad range of the available phase space, for | ηγ| &amp;lt; 1.44 and 1.57 &amp;lt; | ηγ| &amp;lt; 2.50 , | ηjet| &amp;lt; 2.5 , 40&amp;lt;pTγ&amp;lt;1000GeV, and jet transverse momentum, pTjet, &amp;gt; 25GeV. The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties. © 2019, CERN for the benefit of the CMS collaboration

    Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at √s=13Te

    No full text
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δϕ12, is presented. The measurement considers events where the two leading jets are nearly collinear (“back-to-back”) in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13Te and corresponding to an integrated luminosity of 35.9fb-1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘&amp;lt; Δϕ12&amp;lt; 180 ∘. The 2- and 3-jet measurements are not simultaneously described by any of models. © 2019, CERN for the benefit of the CMS collaboration

    Charged-particle nuclear modification factors in PbPb and pPb collisions at root s(NN)=5.02 TeV

    No full text
    Made available in DSpace on 2017-08-17T19:11:59Z (GMT). No. of bitstreams: 1 2-s2.0-85017560557.pdf: 833232 bytes, checksum: 52311916e07607baee648fecbe094920 (MD5) Previous issue date: 20172017

    Erratum to: Measurement of exclusive Υ photoproduction from protons in pPb collisions at s NN = 5.02 TeV (The European Physical Journal C, (2019), 79, 3, (277), 10.1140/epjc/s10052-019-6774-8)

    No full text
    In this article the author name Luigi Calligaris was incorrectly written as A. Calligaris. The original article has been corrected. © CERN for the benefit of the CMS collaboration 2022

    Measurement of single-diffractive dijet production in proton–proton collisions at √s=8Te with the CMS and TOTEM experiments

    No full text
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes pp→pX and pp→Xp, i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s=8Te during a dedicated run with β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb-1. The single-diffractive dijet cross section σjjpX, in the kinematic region ξ&amp;lt; 0.1 , 0.03&amp;lt;|t|&amp;lt;1Ge2, with at least two jets with transverse momentum pT&amp;gt;40Ge, and pseudorapidity | η| &amp;lt; 4.4 , is 21.7±0.9(stat)-3.3+3.0(syst)±0.9(lumi)nb. The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ, is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10x≤ - 1.6 , is R=(σjjpX/Δξ)/σjj=0.025±0.001(stat)±0.003(syst), where σjjpX and σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons. © 2020, CERN for the benefit of the CMS and TOTEM collaborations
    corecore