18,389 research outputs found

    On the Potential of Leptonic Minimal Flavour Violation

    Full text link
    Minimal Flavour Violation can be realized in several ways in the lepton sector due to the possibility of Majorana neutrino mass terms. We derive the scalar potential for the fields whose background values are the Yukawa couplings, for the simplest See-Saw model with just two right-handed neutrinos, and explore its minima. The Majorana character plays a distinctive role: the minimum of the potential allows for large mixing angles -in contrast to the simplest quark case- and predicts a maximal Majorana phase. This points in turn to a strong correlation between neutrino mass hierarchy and mixing pattern.Comment: 6 pages; version published on Physics Letters

    Bayesian optimization for the inverse scattering problem in quantum reaction dynamics

    Full text link
    We propose a machine-learning approach based on Bayesian optimization to build global potential energy surfaces (PES) for reactive molecular systems using feedback from quantum scattering calculations. The method is designed to correct for the uncertainties of quantum chemistry calculations and yield potentials that reproduce accurately the reaction probabilities in a wide range of energies. These surfaces are obtained automatically and do not require manual fitting of the {\it ab initio} energies with analytical functions. The PES are built from a small number of {\it ab initio} points by an iterative process that incrementally samples the most relevant parts of the configuration space. Using the dynamical results of previous authors as targets, we show that such feedback loops produce accurate global PES with 30 {\it ab initio} energies for the three-dimensional H + H2_2 →\rightarrow H2_2 + H reaction and 290 {\it ab initio} energies for the six-dimensional OH + H2_2 →\rightarrow H2_2O + H reaction. These surfaces are obtained from 360 scattering calculations for H3_3 and 600 scattering calculations for OH3_3. We also introduce a method that quickly converges to an accurate PES without the {\it a priori} knowledge of the dynamical results. By construction, our method illustrates the lowest number of potential energy points (i.e. the minimum information) required for the non-parametric construction of global PES for quantum reactive scattering calculations.Comment: 9 pages, 8 figure

    Global extraction of the parton-to-pion fragmentation functions at NLO accuracy in QCD

    Get PDF
    In this review, we discuss the results on the parton-to-pion fragmentation functions obtained in a combined NLO fit to data of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and lepton-nucleon deep-inelastic scattering. A more complete discussion can be found in Ref. [1].Comment: 6 pages, 1 figure. To be published in Journal of Physics Conference Series (IOP). Joint Proceedings of the XV Mexican Workshop on Particles and Fields & the XXX Annual Meeting of the Division of Particles and Fields of the Mexican Physical Societ

    On the frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Full text link
    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence with radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 muHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main-sequence solar-like stars, the F-star HD49933, and the young 1-Gyr-old solar analog KIC10644253, although with different amplitudes of the shifts of about 2 muHz and 0.5 muHz respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with already known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l=0 and l=1 modes individually. Given the quality of the data, the results could indicate that a different physical source of perturbation than in the Sun is dominating in this sample of solar-like stars.Comment: Accepted for publication in A&

    Birth, death and diffusion of interacting particles

    Get PDF
    Individual-based models of chemical or biological dynamics usually consider individual entities diffusing in space and performing a birth-death type dynamics. In this work we study the properties of a model in this class where the birth dynamics is mediated by the local, within a given distance, density of particles. Groups of individuals are formed in the system and in this paper we concentrate on the study of the properties of these clusters (lifetime, size, and collective diffusion). In particular, in the limit of the interaction distance approaching the system size, a unique cluster appears which helps to understand and characterize the clustering dynamics of the model.Comment: 15 pages, 6 figures, Iop style. To appear in Journal of Physics A: Condensed matte
    • …
    corecore