980 research outputs found
Building an Effective Internal Audit Function: Learning from SOX Section 404 Reports
In the wake of the major accounting scandals, internal auditing has emerged as a powerful force in promoting effective controls, risk management, and governance in U.S. companies. This article highlights recent internal audit-related problems that were revealed in SOX Section 404 reports and offers specific recommendations for building an effective, value-adding internal audit function
IT-Related Material Weaknesses In Internal Control: Initial Evidence From SOX Section 404 Reports
Section 404 of the Sarbanes-Oxley Act (SOX) requires auditors and managers to assess public companies’ internal control over financial reporting. Since some of the material weaknesses in internal control noted by auditors and management relate to IT issues, Section 404 reports offer a new opportunity to examine the types of IT-related control issues that public companies are struggling to address. This study presents a summary of the most commonly cited IT-related material weaknesses in internal control described in recent Section 404 internal control reports and describes the characteristics of companies with IT-related weaknesses. We also provide insights into companies’ remedial actions to correct their IT control weaknesses
Remediation of Material Weaknesses Related to Employee Compensation
The article presents an analysis of the remedial efforts of U.S. companies with material weaknesses in internal control related to employee compensation. Despite the passage of the Sarbanes-Oxley Act (SOX), public companies have continued to experience accounting and control issues related to employee compensation. The results indicate the role of the Public Company Accounting Oversight Board (PCAOB) and its committees in preventing and remediating material weaknesses concerning compensation
SOX Section 404 Material Weaknesses Related to Revenue Recognition
The article analyzes disclosures of material weaknesses in internal control after the implementation of U.S. Sarbanes-Oxley Act of 2002 (SOX) 404 and summarizes the efforts of firms to remediate such material weaknesses. According to SOX section 404, management must issue a report on the effectiveness of the internal control of the firm over financial reporting. It notes that a report must be issued by the external auditor expressing an opinion on the effectiveness of internal control over financial reporting
Theory of optical spectra of polar quantum wells: Temperature effects
Theoretical and numerical calculations of the optical absorption spectra of
excitons interacting with longitudinal-optical phonons in quasi-2D polar
semiconductors are presented. In II-VI semiconductor quantum wells, exciton
binding energy can be tuned on- and off-resonance with the longitudinal-optical
phonon energy by varying the quantum well width. A comprehensive picture of
this tunning effect on the temperature-dependent exciton absorption spectrum is
derived, using the exciton Green's function formalism at finite temperature.
The effective exciton-phonon interaction is included in the Bethe-Salpeter
equation. Numerical results are illustrated for ZnSe-based quantum wells. At
low temperatures, both a single exciton peak as well as a continuum resonance
state are found in the optical absorption spectra. By contrast, at high enough
temperatures, a splitting of the exciton line due to the real phonon absorption
processes is predicted. Possible previous experimental observations of this
splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address:
[email protected]
On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy
We study the normal state electronic excitations probed by angle resolved
photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to
establish explicit criteria for determining the Fermi surface from ARPES data
on strongly interacting systems where sharply defined quasiparticles do not
exist and the dispersion is very weak in parts of the Brillouin zone.
Additional complications arise from strong matrix element variations within the
zone. We present detailed results as a function of incident photon energy, and
show simple experimental tests to distinguish between an intensity drop due to
matrix element effects and spectral weight loss due to a Fermi crossing. We
reiterate the use of polarization selection rules in disentangling the effect
of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite
all the complications, the Fermi surface can be determined unambiguously: it is
a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures
remain the sam
History of Inuit Community Exposure to Lead, Cadmium, and Mercury in Sewage Lake Sediments
Exposure to lead, cadmium, and mercury is known to be high in many arctic Inuit communities. These metals are emitted from industrial and urban sources, are distributed by long-range atmospheric transport to remote regions, and are found in Inuit country foods. Current community exposure to these metals can be measured in food, but feces and urine are also excellent indicators of total exposure from ingestion and inhalation because a high percentage of each metal is excreted. Bulk domestic sewage or its residue in a waste treatment system is a good substitute measure. Domestic waste treatment systems that accumulate metals in sediment provide an accurate historical record of changes in ingestion or inhalation. We collected sediment cores from an arctic lake used for facultative domestic sewage treatment to identify the history of community exposure to Pb, Cd, and Hg. Cores were dated and fluxes were measured for each metal. A nearby lake was sampled to measure combined background and atmospheric inputs, which were subtracted from sewage lake data. Pb, Cd, and Hg inputs from sewage grew rapidly after the onset of waste disposal in the late 1960s and exceeded the rate of population growth in the contributing community from 1970 to 1990. The daily per-person Pb input in 1990 (720,000 ng/person per day) exceeded the tolerable daily intake level. The Cd input (48,000 ng/person per day) and Hg input (19,000 ng/person per day) were below the respective TDI levels at the time
Ab initio simulation of photoemission spectroscopy in solids: Plane-wave pseudopotential approach, with applications to normal-emission spectra of Cu(001) and Cu(111)
We introduce a new method for simulating photoemission spectra from bulk
crystals in the ultra-violet energy range, within a three-step model. Our
method explicitly accounts for transmission and matrix-element effects, as
calculated from state-of-the-art plane-wave pseudopotential techniques within
density-functional theory. Transmission effects, in particular, are included by
extending to the present problem a technique previously employed with success
to deal with ballistic conductance in metal nanowires. The spectra calculated
for normal emission in Cu(001) and Cu(111) are in fair agreement with previous
theoretical results and with experiments, including a newly determined
spectrum. The residual discrepancies between our results and the latter are
mainly due to the well-known deficiencies of density-functional theory in
accounting for correlation effects in quasi-particle spectra. A significant
improvement is obtained by the LDA+U method. Further improvements are obtained
by including surface-optics corrections, as described by Snell's law and
Fresnel's equations.Comment: 25 pages, 7 figures, accepted in PR
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit
We have investigated the lowest binding-energy electronic structure of the
model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy
(ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give
a comprehensive, self-consistent picture of the nature of the first
electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we
show a strong dependence on the polarization of the excitation light which is
understandable in the context of the matrix element governing the photoemission
process, which gives a state with the symmetry of a Zhang-Rice singlet.
Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice
singlet on the exciting photon-energy is shown to be consistent with
interference effects connected with the periodicity of the crystal structure in
the crystallographic c-direction. Thirdly, we measured the dispersion of the
first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being
controversial in the literature, and have shown that the data are best fitted
using an extended t-J-model, and extract the relevant model parameters. An
analysis of the spectral weight of the first ionization states for different
excitation energies within the approach used by Leung et al. (Phys. Rev. B56,
6320 (1997)) results in a strongly photon-energy dependent ratio between the
coherent and incoherent spectral weight. The possible reasons for this
observation and its physical implications are discussed.Comment: 10 pages, 8 figure
- …