40 research outputs found

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: HENSLOW’S SPARROW

    Get PDF
    were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    EFFECTS OF MANAGEMENT PRACTICES ON GRASSLAND BIRDS: HENSLOW’S SPARROW

    Get PDF
    were summarized from information in more than 4,000 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates of cowbird parasitism, host responses to parasitism, and factors that influence parasitism, such as nest concealment and host density. The impact of management depends, in part, upon a species’ nesting phenology and biology. The section on breeding-season phenology and site fidelity includes details on spring arrival and fall departure for migratory populations in the Great Plains, peak breeding periods, the tendency to renest after nest failure or success, and the propensity to return to a previous breeding site. The duration and timing of breeding varies among regions and years. Species’ response to management summarizes the current knowledge and major findings in the literature on the effects of different management practices on the species. The section on management recommendations complements the previous section and summarizes specific recommendations for habitat management provided in the literature. If management recommendations differ in different portions of the species’ breeding range, recommendations are given separately by region. The literature cited contains references to published and unpublished literature on the management effects and habitat requirements of the species. This section is not meant to be a complete bibliography; a searchable, annotated bibliography of published and unpublished papers dealing with habitat needs of grassland birds and their responses to habitat management is posted at the Web site mentioned below

    04. Population Trends of Breeding Grassland Birds at Midewin National Tallgrass Prairie, 1985–2015

    Get PDF
    We use data from ongoing bird monitoring programs to assess long-term population trends at Midewin National Tallgrass Prairie in northeastern Illinois. Midewin is the nation’s first National Tallgrass Prairie and was established in 1996 on the site of the former Joliet Army Ammunition Plant. Annual bird monitoring began at the site in the early 1980s when it was discovered that the pastures and hayfields maintained by the Army contained significant grassland bird populations. Ninety-four species of breeding birds were recorded at the site between 2009 and 2015, including large populations of several grasslandobligate birds including dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), grasshopper sparrow (Ammodramus savannarum), bobolink (Dolichonyx oryzivorus), and Henslow’s sparrow (Ammodramus henslowii). Trend analyses showed that populations of bobolink, grasshopper sparrow, and savannah sparrow (Passerculus sandwichensis) were stable on the site between 1985 and 2015, whereas dickcissel and Henslow’s sparrow showed significant population increases during this interval. Three species declined significantly between 1985 and 2015: eastern meadowlark, upland sandpiper (Bartramia longicauda), and vesper sparrow (Pooecetes gramineus). The stable population trends for bobolink, grasshopper sparrow, and savannah sparrow contrast sharply with statewide and regional trends for these species, which show large population declines. The recent introduction of bison to the site may help provide the habitat structure needed to maintain large grassland bird populations at the site

    Conservation of grassland birds in North America: understanding ecological processes in different regions

    Get PDF
    Many species of birds that depend on grassland or savanna habitats have shown substantial overall population declines in North America. To understand the causes of these declines, we examined the habitat requirements of birds in six types of grassland in different regions of the continent. Open habitats were originally maintained by ecological drivers (continual and pervasive ecological processes) such as drought, grazing, and fire in tallgrass prairie, mixed-grass prairie, shortgrass prairie, desert grassland, and longleaf pine savanna. By contrast, grasslands were created by occasional disturbances (e.g., fires or beaver [Castor canadensis] activity) in much of northeastern North America. The relative importance of particular drivers or disturbances differed among regions. Keystone mammal species grazers such as prairie-dogs (Cynomys spp.) and bison (Bison bison) in western prairies, and dam-building beavers in eastern regions of the continent. Deciduous forests played a crucial, and frequently unappreciated, role in maintaining many grassland systems. Although fire was important in preventing invasion of woody plants in the tallgrass and moist mixed prairies, grazing played a more important role in maintaining the typical grassland vegetation of shortgrass prairies and desert grasslands. Heavy grazing by prairiedogs or bison created a low \u27grazing lawn\u27 that is the preferred habitat for many grassland bird species that are restricted to the shortgrass prairie and desert grasslands. Ultimately, many species of grassland birds are vulnerable because people destroyed their breeding, migratory, and wintering habitat, either directly by converting it to farmland and building lots, or indirectly by modifying grazing patterns, suppressing fires, or interfering with other ecological processes that originally sustained open grassland. Understanding the ecological processes that originally maintained grassland systems is critically important for efforts to improve, restore, or create habitat for grassland birds and other grassland organisms. Consequently, preservation of large areas of natural or seminatural grassland, where these processes can be studied and core populations of grassland birds can flourish, should be a high priority. However, some grassland birds now primarily depend on artificial habitats that are managed to maximize production of livestock, timber, or other products. With a sound understanding of the habitat requirements of grassland birds and the processes that originally shaped their habitats, it should be possible to manage populations sustainably on \u27working land\u27 such as cattle ranches, farms, and pine plantations. Proper management of private land will be critical for preserving adequate breeding, migratory, and winter habitat for grassland and savanna species

    Nature reserves as catalysts for landscape change

    Get PDF
    Scientists have called repeatedly for a broader conservation agenda that emphasizes not only protected areas but also the landscapes in which those areas are embedded. We describe key advances in the science and practice of engaging private landowners in biodiversity conservation and propose a conceptual model for integrating conservation management on reserves and privately owned lands. The overall goal of our model is to blur the distinction between land management on reserves and the surrounding landscapes in a way that fosters widespread implementation of conservation practices. Reserves assume a new role as natural laboratories where alternative land-use practices, designed to achieve conservation objectives, can be explored. We articulate the details of the model using a case study from the North American tallgrass prairie ecoregion.Peer reviewedNatural Resource Ecology and Managemen

    Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy

    Expanding the clinical and genetic spectrum of ALPK3 variants: phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined.Methods and Results We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults.Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-1 6.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6x10(-5); U.S. cohort, P = 2.2x10(-13)).Conclusion Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy.Genetics of disease, diagnosis and treatmen

    Primjena i kompozicija individualiziranih zaštitnih elemenata linijske grafike u projektiranju novčanica

    Get PDF
    Proces stvaranja novčanica je dugotrajan i složen, što rezultira kompleksnim rješenjima koja predstavljaju pravo remek djelo grafike. Novčanice su prožete brojnim detaljima i prenose različite informacije koje se analiziraju u teorijskom dijelu rada. Prvotno se postavljaju kriteriji po kojima se izrađuje detaljna analiza velikog broja zaštitnih i konceptualnih elemenata na primjerima novčanica. Time je prikazan okvirni povijesni pregled razvoja novčanica i utjecaji kojima je bio izložen. Analizira se međuovisnost dizajna o sigurnosnim značajkama, te se ispituje razina informiranosti javnosti o zaštitama na novčanicama. Zaključuje se koje metode zaštite su najučinkovitije, te kako šira javnost najčešće provjerava autentičnost novčanica. U eksperimentalnom dijelu rada se na temelju donesenih zaključaka iz teorijskog dijela izrađuje prototip novčanice koja je u najvećoj mjeri prožeta individualiziranim PostScript programskim rješenjima elemenata linijske grafike (rozete, mikrotekst, zaštitne linije, brojevi apoena), a od ostalih zaštita modeliran je individualizirani raster transformacijom matematičkog izraza u PostScript programski kod. Sve ostale zaštite tipične za novčanice simulirane su alatima za rastersku i vektorsku grafiku. U radu se ispituje utjecaj kompozicije zaštitnih elemenata na prepoznavanje autentičnosti novčanica, te efikasnost samih individualiziranih programskih rješenja

    BOOK REVIEWS: FORCE OF NATURE: GEORGE FELL, FOUNDER OF THE NATURAL AREAS MOVEMENT. Arthur Melville Pearson.

    Get PDF
    Arthur Melville Pearson’s Force of Nature is a book that tells two very interesting and intertwined stories. One is a story of how perseverance and determination can drive an individual to accomplish great things. And the other is a story of how the modern day natural areas movement came to be. Fortunately for those interested in conservation and natural areas protection, those two stories were combined in the life of George Fell (1916-1994). In Fell’s home state of Illinois, where his impact is widely known, his name is synonymous with conservation. In other places where his impact is less well known, it should be
    corecore