329 research outputs found
Recommended from our members
Modelling fixed plant and algal dynamics in rivers: an application to the River Frome
The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of
rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model,
applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups,
however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats
Recommended from our members
Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions.
Many large-bodied marine fishes that form spawning aggregations, such as the Nassau grouper (Epinephelus striatus), have suffered regional overfishing due to exploitation during spawning. In response, marine resource managers in many locations have established marine protected areas or seasonal closures to recover these overfished stocks. The challenge in assessing management effectiveness lies largely in the development of accurate estimates to track stock size through time. For the past 15 y, the Cayman Islands government has taken a series of management actions aimed at recovering collapsed stocks of Nassau grouper. Importantly, the government also partnered with academic and nonprofit organizations to establish a research and monitoring program (Grouper Moon) aimed at documenting the impacts of conservation action. Here, we develop an integrated population model of 2 Cayman Nassau grouper stocks based on both diver-collected mark-resight observations and video censuses. Using both data types across multiple years, we fit parameters for a state-space model for population growth. We show that over the last 15 y the Nassau grouper population on Little Cayman has more than tripled in response to conservation efforts. Census data from Cayman Brac, while more sparse, show a similar pattern. These findings demonstrate that spatial and seasonal closures aimed at rebuilding aggregation-based fisheries can foster conservation success
Alterations in Home Range Space Use over a Multi-year Study of Nassau Grouper (Epinephelus striatus)
Revisiting hydro-ecological impacts of climate change on a restored floodplain wetland via hydrological / hydraulic modelling and the UK Climate Projections 2018 scenarios
The hydro-ecological impacts of 40 UK Climate Projections 2018 scenarios on a restored lowland England river floodplain are assessed using a MIKE SHE / MIKE 11 model. Annual precipitation declines for 60% of scenarios (range: -26%–21%, with small, <5%, declines for the central probability level). Potential evapotranspiration increases for all probability levels except the most extreme, very unlikely, 10% level (range: -4%–43%, central probability 9%–20%) Mean, peak and low river discharges are reduced for all but the extreme 90% probability level. Reduced frequency of bankfull discharge dominates (at least halved for the central probability level). Floodplain inundation declines for over 97% of 320 scenario-events. Winter water table levels still intercept the surface, while mean and summer low levels are reduced. Declines in mean summer floodplain water table levels for the central probability level (0.22 m and 0.28 m for the 2050s and 2080s, respectively) are twice as large as those in the more dynamic riparian area. Declines reach 0.39 m for some 10% probability level scenarios. Simulated hydrological changes differ subtly from a previous assessment using earlier UK climate projections. A soil aeration stress index demonstrates that, under baseline conditions, prolonged high winter floodplain water tables drive long periods of low root-zone oxygen, in turn favouring vegetation communities adapted to waterlogged conditions. Climate change reduces aeration stress and the extent of appropriate conditions for these plant communities in favour of communities less tolerant of wet conditions
Interpreting spatial patterns in redox and coupled water-nitrogen fluxes in the streambed of a gaining river reach
Water pathways through permeable riverbeds are multi-dimensional, including lateral hyporheic exchange flows as well as vertical (upwelling and downwelling) fluxes. The influence of different pathways of water on solute patterns and the supply of nitrate and other redox-sensitive chemical species in the riverbed is poorly understood but could be environmentally significant. For example, nitrate-rich upwelling water in the gaining reaches of groundwater-fed rivers has the potential to supply significant quantities of nitrate through the riverbed to surface waters, constraining opportunities to deliver the goals of the EU Water Framework Directive to achieve ‘good ecological status’. We show that patterns in porewater chemistry in the armoured river bed of a gaining reach (River Leith, Cumbria) reflect the spatial variability in different sources of water; oxic conditions being associated with preferential discharge from groundwater and reducing conditions with longitudinal and lateral fluxes of water due to water movement from riparian zones and/or hyporheic exchange flows. Our findings demonstrate the important control of both vertical and lateral water fluxes on patterns of redox-sensitive chemical species in the river bed. Furthermore, under stable, baseflow conditions (<Q90) a zone of preferential discharge, comprising 20 % of the reach by area contributes 4–9 % of the total nitrate being transported through the reach in surface water, highlighting the need to understand the spatial distribution of such preferential discharge locations at the catchment scale to establish their importance for nitrate delivery to the stream channel
The Association of Ménétrier Disease with Ulcerative Colitis: A Case Report with Implications on the Pathogenesis of Ménétrier Disease
Ménétrier disease (MD) is a rare hypertrophic condition of the gastric mucosa. The unusual association of MD with ulcerative colitis (UC) has been reported in the literature in eight cases. Transforming growth factor-alpha (TGF-alpha) is overexpressed in UC and appears to play a role in colonic healing and repair. Overproduction of TGF-alpha in murine stomach has been shown to induce gastric hypertrophy similar to MD. It can be hypothesized that increased expression of TGF-alpha may occur in the gastric mucosa in patients with UC and may lead to MD. We report the ninth case of MD associated with UC. The role of TGF-alpha and treatment with cetuximab are discussed
Migratory behavior of aggregating male Tiger Grouper (Mycteroperca tigris) in Little Cayman, Cayman Islands
Tiger Grouper (Mycteroperca tigris) form fish spawning aggregations (FSAs) around the winter full moons (typically January through April) in the Caribbean. Males defend territories to attract mates in a lek-like reproductive strategy. Prior studies have documented rapid declines in populations with FSA-associated fisheries. This study examines the migratory behavior of adult male Tiger Grouper in Little Cayman, Cayman Islands, to better understand the impacts of aggregation fishing. As part of the Grouper Moon Project, we acoustically tagged ten spawning male Tiger Grouper at the western end of Little Cayman in February 2015. Using a hydrophone array surrounding the island, we tracked the movements of the tagged fish for 13 months. We observed 3 migratory strategies: resident fish (n = 2) that live at the FSA site, neighboring fish (n = 5) that live within 4 km of the site, and commuter fish (n = 3) that travel over 4 km for spawning. Fish began aggregating 2 days before the full moon and left 10–12 days after the full moon, from January to May. Regardless of migratory strategy, all tagged fish that aggregated after February 2015 returned to the west end FSA. However, in January 2016, one fish appeared to attend a different FSA closer to its presumed home territory. Tiger Grouper may establish multiple FSAs around Little Cayman, and males appear to attend FSAs near their home territories. Protracted spawning seasons, FSA site infidelity, and putative FSA catchments should all be considered to ensure sustainable fisheries management for this important species.publishedVersio
- …