140 research outputs found

    Phase II Study of Low-dose Paclitaxel and Cisplatin as a Second-line Therapy after 5-Fluorouracil/Platinum Chemotherapy in Gastric Cancer

    Get PDF
    This study was performed to evaluate the efficacy and toxicity of low-dose paclitaxel/cisplatin chemotherapy in patients with metastatic or recurrent gastric cancer that had failed 5-fluorouracil/platinum-based chemotherapy. Thirty-two patients with documented progression on or within 6 months after discontinuing 5-fluorouracil/platinum-based chemotherapy were enrolled. As a second-line treatment, paclitaxel (145 mg/m2) and cisplatin (60 mg/m2) was administered on day 1 every 3 weeks. Among 32 patients enrolled, 8 (25%) responded partially to paclitaxel/cisplatin, 8 (25%) had stable disease, and 14 (44%) had progressive disease. Two patients (6%) were not evaluable. The median time to progression (TTP) and overall survival for all patients were 2.9 months and 9.1 months, respectively. The most common hematologic toxicity was anemia (47%). Grade 3 neutropenia developed in three patients (9%), but no other grade 3/4 hematologic toxicity occurred. The most common non-hematologic toxicities were emesis (31%) and peripheral neuropathy (38%). Three cases (9%) of grade 3/4 emesis and 2 cases (6%) of grade 3 peripheral neuropathy developed. In conclusion, low-dose paclitaxel and cisplatin chemotherapy showed moderate activity with favorable toxicity profiles. However, relatively short TTP of this regimen warrants the development of more effective paclitaxel-based regimens other than combination with cisplatin in these patients as second-line therapies

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Effect of Ammonium Halide Additives on the Performance of Methyl Amine Based Perovskite Solar Cells

    No full text
    CH3NH3PbI3-xClx species were fabricated as light-absorbing layers for perovskite solar cells (PSCs), by employing NH4I, NH4Br, and NH4Cl as additives via annealing at 100 °C for different times. Solutions containing CH3NH3I, PbI2, and PbCl2 (4:1:1 molar ratio) in N,N-dimethylformamide were used to prepare perovskites with NH4I, NH4Br, and NH4Cl as additives, at concentrations of 0.1 M and 0.3 M. The additives helped increase the grain size and reduce pinholes in the perovskite films, as confirmed by field-emission scanning electron microscopy. The X-ray diffraction profiles of CH3NH3PbI3-xClx clearly showed peaks at 14° and 28° for the samples with additives, indicative of crystallinity. The best PSC performance with a power conversion efficiency of 9.13%, was achieved using 0.1 M NH4I by annealing for 5 min, whereas the power conversion efficiency of the perovskite solar cells without additives was 5.40%

    Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2

    Get PDF
    Protein homo-oligomerization is an important molecular mechanism in many biological processes. Therefore, the ability to control protein homo-oligomerization allows the manipulation and interrogation of numerous cellular events. To achieve this, cryptochrome 2 (CRY2) from Arabidopsis thaliana has been recently utilized for blue light-dependent spatiotemporal control of protein homo-oligomerization. However, limited knowledge on molecular characteristics of CRY2 obscures its widespread applications. Here, we identify important determinants for efficient cryptochrome 2 clustering and introduce a new CRY2 module, named ''CRY2clust'', to induce rapid and efficient homo-oligomerization of target proteins by employing diverse fluorescent proteins and an extremely short peptide. Furthermore, we demonstrate advancement and versatility of CRY2clust by comparing against previously reported optogenetic tools. Our work not only expands the optogenetic clustering toolbox but also provides a guideline for designing CRY2-based new optogenetic modules. © 2017 The Author(s)1461Nsciescopu

    Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    No full text
    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions

    Electrochemical Synergies of Heterostructured Fe2O3-MnO Catalyst for Oxygen Evolution Reaction in Alkaline Water Splitting

    No full text
    For efficient electrode development in an electrolysis system, Fe2O3, MnO, and heterojunction Fe2O3-MnO materials were synthesized via a simple sol–gel method. These particles were coated on a Ni-foam (NF) electrode, and the resulting material was used as an electrode to be used during an oxygen evolution reaction (OER). A 1000-cycle OER test in a KOH alkaline electrolyte indicated that the heterojunction Fe2O3-MnO/NF electrode exhibited the most stable and highest OER activity: it exhibited a low overvoltage (n) of 370 mV and a small Tafel slope of 66 mV/dec. X-ray photoelectron spectroscopy indicated that the excellent redox performance contributed to the synergy of Mn and Fe, which enhanced the OER performance of the Fe2O3-MnO/NF electrode. Furthermore, the effective redox reaction of Mn and Fe indicated that the structure maintained stability even under 1000 repeated OER cycles

    Super-High-Purity Seed Sorter using Low-latency Image-Recognition based on Deep Learning

    No full text
    Most commercial optical sorting systems are designed to achieve high throughput, so they use a naive low-latency image processing for object identification. These naive low-latency algorithms have difficulty in accurately identifying objects with various shapes, textures, sizes, and colors, so the purity of sorted objects is degraded. Current deep learning technology enables robust image detection and classification, but its inference latency requires several milliseconds; thus, deep learning cannot be directly applied to such real-time high throughput applications. We therefore developed a super-high purity seed sorting system that uses a low-latency image-recognition based on a deep neural network and removes the seeds of noxious weeds from mixed seed product at high throughput with accuracy. The proposed system partitions the detection task into localization and classification, and applies batch inference only once strategy; it achieved 500-fps throughput image-recognition including detection and tracking. Based on the classified and tracked results, air ejectors expel the unwanted seeds. This proposed system eliminates almost the whole weeds with small loss of desired seeds, and is superior to current commercial optical sorting systems.11Nsciescopu
    corecore