24 research outputs found
Fusion of Head and Full-Body Detectors for Multi-Object Tracking
In order to track all persons in a scene, the tracking-by-detection paradigm
has proven to be a very effective approach. Yet, relying solely on a single
detector is also a major limitation, as useful image information might be
ignored. Consequently, this work demonstrates how to fuse two detectors into a
tracking system. To obtain the trajectories, we propose to formulate tracking
as a weighted graph labeling problem, resulting in a binary quadratic program.
As such problems are NP-hard, the solution can only be approximated. Based on
the Frank-Wolfe algorithm, we present a new solver that is crucial to handle
such difficult problems. Evaluation on pedestrian tracking is provided for
multiple scenarios, showing superior results over single detector tracking and
standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and
1st on the new MOT17 benchmark, outperforming over 90 trackers.Comment: 10 pages, 4 figures; Winner of the MOT17 challenge; CVPRW 201
Accurate Long-Term Multiple People Tracking Using Video and Body-Worn IMUs
Most modern approaches for video-based multiple people tracking rely on human appearance to exploit similarities between person detections. Consequently, tracking accuracy degrades if this kind of information is not discriminative or if people change apparel. In contrast, we present a method to fuse video information with additional motion signals from body-worn inertial measurement units (IMUs). In particular, we propose a neural network to relate person detections with IMU orientations, and formulate a graph labeling problem to obtain a tracking solution that is globally consistent with the video and inertial recordings. The fusion of visual and inertial cues provides several advantages. The association of detection boxes in the video and IMU devices is based on motion, which is independent of a person's outward appearance. Furthermore, inertial sensors provide motion information irrespective of visual occlusions. Hence, once detections in the video are associated with an IMU device, intermediate positions can be reconstructed from corresponding inertial sensor data, which would be unstable using video only. Since no dataset exists for this new setting, we release a dataset of challenging tracking sequences, containing video and IMU recordings together with ground-truth annotations. We evaluate our approach on our new dataset, achieving an average IDF1 score of 91.2%. The proposed method is applicable to any situation that allows one to equip people with inertial sensors. © 1992-2012 IEEE
LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera Multi-Object Tracking
Multi-Camera Multi-Object Tracking is currently drawing attention in the
computer vision field due to its superior performance in real-world
applications such as video surveillance in crowded scenes or in wide spaces. In
this work, we propose a mathematically elegant multi-camera multiple object
tracking approach based on a spatial-temporal lifted multicut formulation. Our
model utilizes state-of-the-art tracklets produced by single-camera trackers as
proposals. As these tracklets may contain ID-Switch errors, we refine them
through a novel pre-clustering obtained from 3D geometry projections. As a
result, we derive a better tracking graph without ID switches and more precise
affinity costs for the data association phase. Tracklets are then matched to
multi-camera trajectories by solving a global lifted multicut formulation that
incorporates short and long-range temporal interactions on tracklets located in
the same camera as well as inter-camera ones. Experimental results on the
WildTrack dataset yield near-perfect performance, outperforming
state-of-the-art trackers on Campus while being on par on the PETS-09 dataset.Comment: Official version for CVPR 202
Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
4 pages 359-363 in the print version, additional 7 pages online.Peer reviewe