3,916 research outputs found
The Hg isoelectronic defect in ZnO
We report a study of the luminescence due to Hg in ZnO, concentrating on the main zero phonon line (ZPL) at 3.2766(1) eV and its associated phonon sidebands. For a sample implanted with radioactive 192Hg, the ZPL intensity, normalised to that of shallow bound exciton emission, is observed to decrease with an equivalent half-life of 4.5(1) h, very close to the 4.85(20) h half-life of 192Hg. ZnO
implanted with stable Hg impurities produces the same luminescence spectrum. Temperature dependent measurements confirm that the zero phonon line is a thermalizing doublet involving one allowed and one largely forbidden transition from excited states separated by 0.91(1)meV to a common ground state. Uniaxial stress measurements show that the allowed transition takes place from an orbitally degenerate excited state to a non-degenerate ground state in a centre of trigonal (C3v) symmetry while the magneto-optical properties are characteristic of electron-hole pair recombination at an isoelectronic defect. The doublet luminescence is assigned to bound exciton recombination involving exchange-split gamma5 and gamma1,2 excited states (using C6v symmetry labels; gamma3 and gamma1,2 using C3v labels) at isoelectronic Hg impurities substituting for Zn in the crystal. The electron and hole g values deduced from the magneto-optical data indicate that this Hg impurity
centre in ZnO is hole-attractive
The Lantern Vol. 41, No. 1, Fall 1974
• The Fable • Landscape - Clear Weather in the Valley • Josephine Palooka • Don\u27t Bark Twice - It\u27s All Right • Masks • Suicide Note From a Lemming • The Death of Dame Sexton • Come September • Leaves • Spruce Grove • The Class of \u2775 • The Promise • Images • Sixth Station • Borealis • To Gemhttps://digitalcommons.ursinus.edu/lantern/1105/thumbnail.jp
Experimental Investigation of Flow Condensation in Microgravity
Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%
Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope
The asteroid (21) Lutetia is the target of a planned close encounter by the
Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been
extensively observed by a variety of astronomical facilities. We used the
Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide
wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety
of HST filters and a ground-based visible light spectrum, we employed synthetic
photometry techniques to derive absolute fluxes for Lutetia. New results from
ground-based measurements of Lutetia's size and shape were used to convert the
absolute fluxes into albedos. We present our best model for the spectral energy
distribution of Lutetia over the wavelength range 120-800 nm. There appears to
be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than
~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is
considerably larger than that of typical C-chondrite material (~4%). The
geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not
consistent with a metal-dominated surface at infrared or radar wavelengths, and
its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed
for typical primitive, chondritic material. We derive a relatively high FUV
albedo of ~10%, a result that will be tested by observations with the Alice
spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure
Risk-shifting Through Issuer Liability and Corporate Monitoring
This article explores how issuer liability re-allocates fraud risk and how risk allocation may reduce the incidence of fraud. In the US, the apparent absence of individual liability of officeholders and insufficient monitoring by insurers under-mine the potential deterrent effect of securities litigation. The underlying reasons why both mechanisms remain ineffective are collective action problems under the prevailing dispersed ownership structure, which eliminates the incentives to moni-tor set by issuer liability. This article suggests that issuer liability could potentially have a stronger deterrent effect when it shifts risk to individuals or entities holding a larger financial stake. Thus, it would enlist large shareholders in monitoring in much of Europe. The same risk-shifting effect also has implications for the debate about the relationship between securities litigation and creditor interests. Credi-tors’ claims should not be given precedence over claims of defrauded investors (e.g., because of the capital maintenance principle), since bearing some of the fraud risk will more strongly incentivise large creditors, such as banks, to monitor the firm in jurisdictions where corporate debt is relatively concentrated
Environmental change during MIS4 and MIS 3 opened corridors in the Horn of Africa for <i>Homo sapiens</i> expansion
Archaeological findings, numerical human dispersal models and genome analyses suggest several time windows in the past 200 kyr (thousands of years ago) when anatomically modern humans (AMH) dispersed out of Africa into the Levant and/or Arabia. From close to the key hominin site of Omo-Kibish, we provide near continuous proxy evidence for environmental changes in lake sediment cores from the Chew Bahir basin, south Ethiopia. The data show highly variable hydroclimate conditions from 116 to 66 kyr BP with rapid shifts from very wet to extreme aridity. The wet phases coincide with the timing of the North African Humid Periods during MIS5, as defined by Nile discharge records from the eastern Mediterranean. The subsequent record at Chew Bahir suggests stable regional hydrological setting between 58 and 32 kyr (MIS4 and 3), which facilitated the development of more habitable ecosystems, albeit in generally dry climatic conditions. This shift, from more to less variable hydroclimate, may help account for the timing of later dispersal events of AMH out of Africa
The Lantern Vol. 39, No. 1, Fall 1972
• A Journey Into Darkness • September 5, 1972 • Atlantic Taperecorder • Aftermath • Linda • Sweet Baby Jane • The Court of the Ebony Clown • The Cosmic Band • Poem to the Dreamer • Dawn • Too Bad Life Isn\u27t • Incident at Tiffany\u27s • Sonnet • Infinitas • Podiatry • 2 and 4a • Autistic Autumn • I Walk Alone • Eyes---and They Were Emptyhttps://digitalcommons.ursinus.edu/lantern/1101/thumbnail.jp
- …