445 research outputs found
Tethered Particle Motion Reveals that LacI·DNA Loops Coexist with a Competitor-Resistant but Apparently Unlooped Conformation
AbstractThe lac repressor protein (LacI) efficiently represses transcription of the lac operon in Escherichia coli by binding to two distant operator sites on the bacterial DNA and causing the intervening DNA to form a loop. We employed single-molecule tethered particle motion to observe LacI-mediated loop formation and breakdown in DNA constructs that incorporate optimized operator binding sites and intrinsic curvature favorable to loop formation. Previous bulk competition assays indirectly measured the loop lifetimes in these optimized DNA constructs as being on the order of days; however, we measured these same lifetimes to be on the order of minutes for both looped and unlooped states. In a range of single-molecule DNA competition experiments, we found that the resistance of the LacI-DNA complex to competitive binding is a function of both the operator strength and the interoperator sequence. To explain these findings, we present what we believe to be a new kinetic model of loop formation and DNA competition. In this proposed new model, we hypothesize a new unlooped state in which the unbound DNA-binding domain of the LacI protein interacts nonspecifically with nonoperator DNA adjacent to the operator site at which the second LacI DNA-binding domain is bound
Cardiometabolic risk assessments by body mass index z-score or waist-to-height ratio in a multiethnic sample of sixth-graders
Convention defines pediatric adiposity by the body mass index -score (BMIz) referenced to normative growth charts. Waist-to-height ratio (WHtR) does not depend on sex-and-age references. In the HEALTHY Study enrollment sample, we compared BMIz with WHtR for ability to identify adverse cardiometabolic risk. Among 5,482 sixth-grade students from 42 middle schools, we estimated explanatory variations (R2) and standardized beta coefficients of BMIz or WHtR for cardiometabolic risk factors: insulin resistance (HOMA-IR), lipids, blood pressures, and glucose. For each risk outcome variable, we prepared adjusted regression models for four subpopulations stratified by sex and high versus lower fatness. For HOMA-IR, R2 attributed to BMIz or WHtR was 19%â28% among high-fatness and 8%â13% among lower-fatness students. for lipid variables was 4%â9% among high-fatness and 2%â7% among lower-fatness students. In the lower-fatness subpopulations, the standardized coefficients for total cholesterol/HDL cholesterol and triglycerides tended to be weaker for BMIz (0.13â0.20) than for WHtR (0.17â0.28). Among high-fatness students, BMIz and WHtR correlated with blood pressures for Hispanics and whites, but not black boys (systolic) or girls (systolic and diastolic). In 11-12 year olds, assessments by WHtR can provide cardiometabolic risk estimates similar to conventional BMIz without requiring reference to a normative growth chart
Comparing Two Waist-to-Height Ratio Measurements with Cardiometabolic Risk Factors among Youth with Diabetes
Background: Waist circumference (WC) is commonly measured by either the World Health Organization (WHO) or National Health and Nutrition Examination Survey (NHANES) protocol.
Objective: Compare the associations of WHO vs. NHANES WC-to-height ratio (WHtR) protocols with cardiometabolic risk factors (CMRFs) in a sample of youth with diabetes.
Methods: For youth (10â19 years old with type 1 [N=3082] or type 2 [N=533] diabetes) in the SEARCH for Diabetes in Youth Study, measurements were obtained of WC (by two protocols), weight, height, fasting lipids (total cholesterol, triglycerides, HDL cholesterol, Non-HDL cholesterol) and blood pressures. Associations of CMRFs with WHO and NHANES WHtR were modeled stratified by body mass index (BMI) percentiles for age/sex: lower BMI (<85th BMI percentile; N=2071) vs. higher BMI (â„85th percentile; N=1594).
Results: Among lower-BMI participants, both NHANES and WHO WHtR were associated (p<0.005) with all CMRFs except blood pressure. Among higher-BMI participants, both NHANES and WHO WHtR were associated (p<0.05) with all CMRFs. WHO WHtR was more strongly associated (p<0.05) than NHANES WHtR with triglycerides, non-HDL cholesterol, and systolic blood pressure in lower-BMI participants. Among high-BMI participants, WHO WHtR was more strongly associated (p<0.05) than NHANES WHtR with triglycerides and systolic blood pressure.
Conclusion: Among youth with diabetes, WHtR calculated from either WC protocol captures cardiometabolic risk. The WHO WC protocol may be preferable to NHANES WC
Phase synchronization scheme for a practical phase sensitive amplifier of ASK-NRZ signals
We present a phase locking scheme that enables the demonstration of a practical dual pump degenerate phase sensitive amplifier for 10 Gbit/s non-return to zero amplitude shift keying signals. The scheme makes use of cascaded Mach Zehnder modulators for creating the pump frequencies as well as of injection locking for extracting the signal carrier and synchronizing the local lasers. An in depth optimization study has been performed, based on measured error rate performance, and the main degradation factors have been identified
Kinetic Phenomena in Thin Film Electronic Materials
Contains reports on twelve research projects.National Science Foundation (Grant ECS 85-06505)U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0154)Semiconductor Research Corporation (Contract 87-SP-080)National Science Foundation (Grant ECS 85-06565)International Business Machines, Inc.Sony International Business Machines, Inc.National Science Foundation (Grant DMR 84-18718)International Business Machines, Thomas J. Watson Research CenterJoint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant DMR 85-06030)Charles Stark Draper Laboratory (Contract DL-H-261827)Nippon Telegraph and Telephone, Inc
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Microstructural Evolution in Thin Films of Electronic Materials
Contains reports on ten research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science FoundationU.S. Air Force - Office of Scientific Research Contract AFOSR 85-0154Semiconductor Research CorporationAT&TInternational Business Machines CorporationNational Institutes of Healt
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
- âŠ