1,507 research outputs found
Phase-field simulations of viscous fingering in shear-thinning fluids
A phase-field model for the Hele-Shaw flow of non-Newtonian fluids is
developed. It extends a previous model for Newtonian fluids to a wide range of
shear-dependent fluids. The model is applied to perform simulations of viscous
fingering in shear- thinning fluids, and it is found to be capable of
describing the complete crossover from the Newtonian regime at low shear rate
to the strongly shear-thinning regime at high shear rate. The width selection
of a single steady-state finger is studied in detail for a 2-plateaux
shear-thinning law (Carreau law) in both its weakly and strongly shear-thinning
limits, and the results are related to previous analyses. In the strongly
shear-thinning regime a rescaling is found for power-law (Ostwald-de-Waehle)
fluids that allows for a direct comparison between simulations and experiments
without any adjustable parameters, and good agreement is obtained
Classical Topological Order in Kagome Ice
We examine the onset of classical topological order in a nearest-neighbor
kagome ice model. Using Monte Carlo simulations, we characterize the
topological sectors of the groundstate using a non-local cut measure which
circumscribes the toroidal geometry of the simulation cell. We demonstrate that
simulations which employ global loop updates that are allowed to wind around
the periodic boundaries cause the topological sector to fluctuate, while
restricted local loop updates freeze the simulation into one topological
sector. The freezing into one topological sector can also be observed in the
susceptibility of the real magnetic spin vectors projected onto the kagome
plane. The ability of the susceptibility to distinguish between fluctuating and
non-fluctuating topological sectors should motivate its use as a local probe of
topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure
Recommended from our members
Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials
The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials
A millimeter-wave kinetic inductance detector camera for long-range imaging through optical obscurants
Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year
Transit spectrophotometry of the exoplanet HD 189733b II. New Spitzer observations at 3.6 μm
Context. We present a new primary transit observation of the hot-jupiter HD 189733b, obtained at 3.6 μm with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope. Previous measurements at 3.6 microns suffered from strong systematics, and conclusions could hardly be obtained with confidence on the water detection by comparison of the 3.6 and 5.8 microns observations.
Aims. We aim at constraining the atmospheric structure and composition of the planet and improving previously derived parameters.
Methods. We use a high-S/NSpitzer photometric transit light curve to improve the precision of the near infrared radius of the planet at 3.6 μm. The observation has been performed using high-cadence time series integrated in the subarray mode. We are able to derive accurate system parameters, including planet-to-star radius ratio, impact parameter, scale of the system, and central time of the transit from the fits of the transit light curve. We compare the results with transmission spectroscopic models and with results from previous observations at the same wavelength.
Results. We obtained the following system parameters of , , and at 3.6 μm. These measurements are three times more accurate than previous studies at this wavelength because they benefit from greater observational efficiency and less statistic and systematic errors. Nonetheless, we find that the radius ratio has to be corrected for stellar activity and present a method to do so using ground-based long-duration photometric follow-up in the V-band. The resulting planet-to-star radius ratio corrected for the stellar variability agrees with our previous measurement obtained in the same bandpass. We also discuss that water vapour could not be detected by a comparison of the planetary radius measured at 3.6 and 5.8 μm, because the radius measured at 3.6 μm is affected by absorption by other species, possibly Rayleigh scattering by haze
Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases
PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning.
METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm.
RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function.
CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning
Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases
PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning.
METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm.
RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function.
CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning
Evaluating Student Volunteer and Service-Learning Programs: A Casebook for Practitioners
Today, evaluation concepts and methods are widely available to those who plan and administer student volunteer programs. Unfortunately, however, evaluation has all too often been carried out-and written about-in ways that have robbed it of its usefulness to people dealing with the realities of day-to-day program operation. Evaluation has thus acquired the reputation among practitioners of being too complex, too costly, too time-consuming, even too threatening to be of much practical value
- …