1,388 research outputs found
A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations
A class of Laplace transforms is examined to show that particular cases of
this class are associated with production-destruction and reaction-diffusion
problems in physics, study of differences of independently distributed random
variables and the concept of Laplacianness in statistics, alpha-Laplace and
Mittag-Leffler stochastic processes, the concepts of infinite divisibility and
geometric infinite divisibility problems in probability theory and certain
fractional integrals and fractional derivatives. A number of applications are
pointed out with special reference to solutions of fractional reaction and
reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo
Ammonia toxicity to the brain and creatine.
Symptoms of hyperammonemia are age-dependent and some are reversible. Multiple mechanisms are involved. Hyperammonemia increases the uptake of tryptophan into the brain by activation of the L-system carrier while brain glutamine plays a still undefined role. The uptake of tryptophan by the brain is enhanced when the plasma levels of branched-chain amino acids competing with the other large neutral amino acids are low. Hyperammonemia increases the utilization of branched-chain amino acids in muscle when ketoglutarate is low, and this is further enhanced by glutamine depletion (as a result of therapy with ammonia scavengers like phenylbutyrate). Anorexia, most likely a serotoninergic symptom, might further aggravate the deficiency of indispensable amino acids (e.g., branched-chain and arginine). The role of increased glutamine production in astrocytes and the excitotoxic and metabotropic effects of increased extracellular glutamate have been extensively investigated and found to differ between models of acute and chronic hyperammonemia. Using an in vitro model of cultured embryonic rat brain cell aggregates, we studied the role of creatine in ammonia toxicity. Cultures exposed to ammonia before maturation showed impaired cholinergic axonal growth accompanied by a decrease of creatine and phosphocreatine, a finding not observed in mature cultures. By using different antibodies, we have shown that the phosphorylated form of the intermediate neurofilament protein is affected. Adding creatine to the culture medium partially prevents impairment of axonal growth and the presence of glia in the culture is a precondition for this protective effect. Adequate arginine substitution is essential in the treatment of urea cycle defects as creatine is inefficiently transported into the brain
Accuracy of clinical coding for procedures in oral and maxillofacial surgery.
Clinical coding has important financial implications, and discrepancies in the assigned codes can directly affect the funding of a department and hospital. Over the last few years, numerous oversights have been noticed in the coding of oral and maxillofacial (OMF) procedures. To establish the accuracy and completeness of coding, we retrospectively analysed the records of patients during two time periods: March to May 2009 (324 patients), and January to March 2014 (200 patients). Two investigators independently collected and analysed the data to ensure accuracy and remove bias. A large proportion of operations were not assigned all the relevant codes, and only 32% - 33% were correct in both cycles. To our knowledge, this is the first reported audit of clinical coding in OMFS, and it highlights serious shortcomings that have substantial financial implications. Better input by the surgical team and improved communication between the surgical and coding departments will improve accuracy
Homogeneous, Real-Time NanoBRET Binding Assays for the Histamine H<sub>3</sub> and H<sub>4</sub> Receptors on Living Cells
Receptor-binding affinity and ligand-receptor residence time are key parameters for the selection of drug candidates and are routinely determined using radioligand competition-binding assays. Recently, a novel bioluminescence resonance energy transfer (BRET) method utilizing a NanoLuc-fused receptor was introduced to detect fluorescent ligand binding. Moreover, this NanoBRET method gives the opportunity to follow fluorescent ligand binding on intact cells in real time, and therefore, results might better reflect in vivo conditions as compared with the routinely used cell homogenates or purified membrane fractions. In this study, a real-time NanoBRET-based binding assay was established and validated to detect binding of unlabeled ligands to the histamine H3 receptor (H3R) and histamine H4 receptor on intact cells. Obtained residence times of clinically tested H3R antagonists were reflected by their duration of H3R antagonism in a functional receptor recovery assay
Fractional reaction-diffusion equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b)
derived solutions of a number of fractional kinetic equations in terms of
generalized Mittag-Leffler functions which provide the extension of the work of
Haubold and Mathai (1995, 2000). The subject of the present paper is to
investigate the solution of a fractional reaction-diffusion equation. The
results derived are of general nature and include the results reported earlier
by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for
anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for
reaction-diffusion systems with L\'evy flights. The solution has been developed
in terms of the H-function in a compact form with the help of Laplace and
Fourier transforms. Most of the results obtained are in a form suitable for
numerical computation.Comment: LaTeX, 17 pages, corrected typo
Solution of generalized fractional reaction-diffusion equations
This paper deals with the investigation of a closed form solution of a
generalized fractional reaction-diffusion equation. The solution of the
proposed problem is developed in a compact form in terms of the H-function by
the application of direct and inverse Laplace and Fourier transforms.
Fractional order moments and the asymptotic expansion of the solution are also
obtained.Comment: LaTeX, 18 pages, corrected typo
Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states
Scroll waves are three-dimensional analogs of spiral waves. The linear
stability spectrum of untwisted and twisted scroll waves is computed for a
two-variable reaction-diffusion model of an excitable medium. Different bands
of modes are seen to be unstable in different regions of parameter space. The
corresponding bifurcations and bifurcated states are characterized by
performing direct numerical simulations. In addition, computations of the
adjoint linear stability operator eigenmodes are also performed and serve to
obtain a number of matrix elements characterizing the long-wavelength
deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.
Immune function in female B6C3F1 mice is modulated by DE-71, a commercial polybrominated diphenyl ether mixture
Polybrominated diphenyl ethers (PBDEs) are an important class of flame-retardants that are environmentally persistent and bioaccumulative. Toxicity of these compounds has become a concern because detectable levels of PBDEs are present in humans and wildlife and they are structurally similar to polychlorinated biphenyls (PCBs). This study examined the effects of the commercial penta-BDE mixture, DE-71, in adult female B6C3F1 mice on hematology, serum clinical chemistry, thyroid hormones, tissue histology, and several immunotoxicity end-points (lymphocyte proliferation, NK cell activity, splenic immunophenotypes, and SRBC-specific-IgM production). Mice were exposed via oral gavage for 28 days to achieve total administered doses (TAD) of 0, 0.5, 5, 50, or 100 mg/kg. No changes in histology, clinical chemistry, body or organ weights were observed. Serum total T3 and T4 levels were not altered by any of the DE-71 treatments. Peripheral blood monocyte numbers were decreased by the 0.5, 5, and 50 mg/kg treatments, but not by the 100 mg/kg TAD concentration. Compared to controls, mitogen-stimulated T- and B-cell proliferation was increased by the 100 mg/kg TAD concentration (ED50 = 60 mg/kg TAD [2.14 mg/kg/day] and 58 mg/kg TAD [2.57 mg/kg/day], respectively). NK cell activity was decreased compared to controls by the 100 mg/kg TAD concentration (ED50 = 20 mg/kg TAD [0.7 mg/kg/day]). No alterations were noted in thymic T-cell populations or in SRBC-specific-IgM production. Numbers of CD19+CD21−, CD19+CD21+, CD4+CD8−, CD4−CD8+, CD4−CD8−, and MHC-II+ cells in the spleen were not affected. However, the numbers of splenic CD4+CD8+ cells were decreased compared to the controls by 0.5, 5, and 100 mg/kg TAD. This study provides an assessment of the systemic toxicity and immunotoxicity of DE-71, and indicates that immune parameters are modulated at exposure concentrations lower than previously reported
An Inflationary Scenario in Intersecting Brane Models
We propose a new scenario for D-term inflation which appears quite
straightforwardly in the open string sector of intersecting brane models. We
take the inflaton to be a chiral field in a bifundamental representation of the
hidden sector and we argue that a sufficiently flat potential can be brane
engineered. This type of model generically predicts a near gaussian red
spectrum with negligible tensor modes. We note that this model can very
naturally generate a baryon asymmetry at the end of inflation via the recently
proposed hidden sector baryogenesis mechanism. We also discuss the possibility
that Majorana masses for the neutrinos can be simultaneously generated by the
tachyon condensation which ends inflation. Our proposed scenario is viable for
both high and low scale supersymmetry breaking.Comment: 30 pages, 2 figures; v2 references and comments adde
- …