1,222 research outputs found

    Hybrid galaxy evolution modelling: Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation

    Get PDF
    We introduce a statistical exploration of the parameter space of the Munich semi-analytic model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain (MCMC) method to constrain the 6 free parameters that define the stellar mass function at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B −V colours, and the black hole-bulge mass relation, to obtain mean values, confidence limits and likelihood contours for the best fit model. We discuss how the model parameters affect each galaxy property and find that there are strong correlations between them. We analyze to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understanding of the physics of galaxy formation. When all the observations are combined, the need to suppress dwarf galaxies requires the strength of the supernova feedback to be significantly higher in our best-fit solution than in previous work. We interpret this fact as an indication of the need to improve the treatment of low mass objects. As a possible solution, we introduce the process of satellite disruption, caused by tidal forces exerted by central galaxies on their merging companions. We apply similar MCMC sampling techniques to the new model, which allows us to discuss the impact of disruption on the basic physics of the model. The new best fit model has a likelihood four times better than before, reproducing reasonably all the observational constraints, as well as the metallicity of galaxies and predicting intra-cluster light. We interpret this as an indication of the need to include the new recipe. We point out the remaining limitations of the semi-analytic model and discuss possible improvements that might increase its predictive power in the future

    Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation

    Get PDF
    We present a statistical exploration of the parameter space of the De Lucia and Blaizot version of the Munich semi-analytic (SA) model built upon the Millennium dark matter simulation. This is achieved by applying a Monte Carlo Markov Chain method to constrain the six free parameters that define the stellar and black hole mass functions at redshift zero. The model is tested against three different observational data sets, including the galaxy K-band luminosity function, B - V colours and the black hole-bulge mass relation, separately and combined, to obtain mean values, confidence limits and likelihood contours for the best-fitting model. Using each observational data set independently, we discuss how the SA model parameters affect each galaxy property and find that there are strong correlations between them. We analyse to what extent these are simply reflections of the observational constraints, or whether they can lead to improved understandings of the physics of galaxy formation. When all the observations are combined, we find reasonable agreement between the majority of the previously published parameter values and our confidence limits. However, the need to suppress dwarf galaxy formation requires the strength of the supernova feedback to be significantly higher in our best-fitting solution than in previous work. To balance this, we require the feedback to become ineffective in haloes of lower mass than before, so as to permit the formation of sufficient high-luminosity galaxies: unfortunately, this leads to an excess of galaxies around L*. Although the best fit is formally consistent with the data, there is no region of parameter space that reproduces the shape of galaxy luminosity function across the whole magnitude range. For our best fit, we present the model predictions for the bJ-band luminosity and stellar mass functions. We find a systematic disagreement between the observed mass function and the predictions from the K-band constraint, which we explain in light of recent works that suggest uncertainties of up to 0.3 dex in the mass determination from stellar population synthesis models. We discuss modifications to the SA model that might simultaneously improve the fit to the observed mass function and reduce the reliance on excessive supernova feedback in small haloes

    Supermassive black holes as the regulators of star formation in central galaxies

    Full text link
    We present a relationship between the black hole mass, stellar mass, and star formation rate of a diverse group of 91 galaxies with dynamically-measured black hole masses. For our sample of galaxies with a variety of morphologies and other galactic properties, we find that the specific star formation rate is a smoothly decreasing function of the ratio between black hole mass and stellar mass, or what we call the specific black hole mass. In order to explain this relation, we propose a physical framework where the gradual suppression of a galaxy's star formation activity results from the adjustment to an increase in specific black hole mass and, accordingly, an increase in the amount of heating. From this framework, it follows that at least some galaxies with intermediate specific black hole masses are in a steady state of partial quiescence with intermediate specific star formation rates, implying that both transitioning and steady-state galaxies live within this region known as the "green valley." With respect to galaxy formation models, our results present an important diagnostic with which to test various prescriptions of black hole feedback and its effects on star formation activity.Comment: 15 pages, 4 figures, 2 tables. Accepted for publication in The Astrophysical Journa

    Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set

    Get PDF
    We present an analysis of the iron abundance in the hot gas surrounding galaxy groups and clusters. To do this, we first compile and homogenize a large data set of 79 low-redshift (z ̃ = 0.03) systems (159 individual measurements) from the literature. Our analysis accounts for differences in aperture size, solar abundance, and cosmology, and scales all measurements using customized radial profiles for the temperature (T), gas density (ρgas), and iron abundance (ZFe). We then compare this data set to groups and clusters in the L-GALAXIES galaxy evolution model. Our homogenized data set reveals a tight T–ZFe relation for clusters, with a scatter in ZFe of only 0.10 dex and a slight negative gradient. After examining potential measurement biases, we conclude that some of this negative gradient has a physical origin. Our model suggests greater accretion of hydrogen in the hottest systems, via stripping from infalling satellites, as a cause. In groups, L-GALAXIES over-estimates ZFe, indicating that metal-rich gas removal (via e.g. AGN feedback) is required. L-GALAXIES is consistent with the observed ZFe in the intracluster medium (ICM) of the hottest clusters at z = 0, and shows a similar rate of ICM enrichment as that observed from at least z ∼ 1.3 to the present day. This is achieved without needing to modify any of the galactic chemical evolution (GCE) model parameters. However, the ZFe in intermediate-T clusters could be under-estimated in our model. We caution that modifications to the GCE modelling to correct this disrupt the agreement with observations of galaxies’ stellar components

    A general approach to quenching and galactic conformity

    Full text link
    We develop a conceptual framework and methodology to study the drivers of the quenching of galaxies, including the drivers of galactic conformity. The framework is centred on the statistic Δ\Delta, which is defined as the difference between the observed star-formation state of a galaxy, and a prediction of its state based on an empirical model of quenching. In particular, this work uses the average quenching effects of stellar mass and local density to construct an empirical model of quenching. Δ\Delta is therefore a residual which reflects the effects of drivers of quenching not captured by stellar mass and local density, or so-called 'hidden variables'. Through a toy model, we explore how the statistical properties of Δ\Delta can be used to learn about the internal and external hidden variables which control the quenching of a sample of galaxies. We then apply this analysis to a sample of local galaxies and find that, after accounting for the average quenching effects of stellar mass and local density, Δ\Delta remains correlated out to separations of 3 Mpc. Furthermore, we find that external hidden variables remain important for driving the residual quenching of low-mass galaxies, while the residual quenching of high-mass galaxies is driven mostly by internal properties. These results, along with a similar analysis of a semi-analytical mock catalogue, suggest that it is necessary to consider halo-related properties as candidates for hidden variables. A preliminary halo-based analysis indicates that much of the correlation of Δ\Delta can be attributed to the physics associated with individual haloes.Comment: 19 pages, 11 figures, submitted to MNRA

    Morphological evolution and galactic sizes in the L-Galaxies SA model

    Get PDF
    In this work we update theL-Galaxiessemi-analytic model (SAM) to better follow thephysical processes responsible for the growth of bulges via disc instabilities (leading to pseudo-bulges) and mergers (leading to classical bulges). We address the former by considering thecontribution of both stellar and gaseous discs in the stability of the galaxy, and we update thelatter by including dissipation of energy in gas-rich mergers. Furthermore, we introduce angularmomentum losses during cooling and find that an accurate match to the observed correlationbetween stellar disc scale length and mass atz∼0.0requires that the gas loses 20%of its initialspecific angular momentum to the corresponding dark matter halo during the formation of thecold gas disc. We reproduce the observed trends between the stellar mass and specific angularmomentum for both disc- and bulge-dominated galaxies, with the former rotating faster thanthe latter of the same mass. We conclude that a two-component instability recipe provides amorphologically diverse galaxy sample which matches the observed fractional breakdown ofgalaxies into different morphological types. This recipe also enables us to obtain an excellent fitto the morphology-mass relation and stellar mass function of different galactic types. Finally, we find that energy dissipation during mergers reduces the merger remnant sizes and allowsus to match the observed mass-size relation for bulge-dominated system

    High affinity of 3D spongin scaffold towards Hg(II) in real waters

    Get PDF
    This study focuses on the ability of commercial natural bath sponges, which are made from the skeletons of marine sponges, to sorb Hg from natural waters. The main component of these bath sponges is spongin, which is a protein-based material, closely related to collagen, offering a plenitude of reactive sites from the great variety of amino acids in the protein chains, where the Hg ions can sorb. For a dose of 40 mg L-1 and initial concentration of 50 μg L-1 of Hg(II), marine spongin (MS) removed ~90% of Hg from 3 water matrixes (ultrapure, bottled, and seawater), corresponding to a residual concentration of ~5 μg L-1, which tends to the recommend value for drinking water of 1 μg L-1. This value was maintained even by increasing the MS dosage, suggesting the existence of a gradient concentration threshold below which the Hg sorption mechanism halts. Kinetic modelling showed that the Pseudo Second-Order equation was the best fit for all the water matrixes, which indicates that the sorption mechanism relies most probably on chemical interactions between the functional groups of spongin and the Hg ions. This material can also be regenerated in HNO3 and reused for Hg sorption, with marginal losses in efficiency, at least for 3 consecutive cycles.publishe
    corecore