15,053 research outputs found

    SMA CO(2-1) Observations of CG30: A Protostellar Binary System with a High-Velocity Quadrupolar Molecular Outflow

    Full text link
    We present interferometric observations in the 12CO (2-1) line and at 1.3 mm dust continuum of the low-mass protostellar binary system in the cometary globule CG30, using the Submillimeter Array. The dust continuum images resolve two compact sources (CG30N and CG30S), with a linear separation of ~8700 AU and total gas masses of ~1.4 and ~0.6 M_sun, respectively. With the CO images, we discover two high-velocity bipolar molecular outflows, driven by the two sources. The two outflows are nearly perpendicular to each other, showing a quadrupolar morphology. The northern bipolar outflow extends along the southeast (redshifted, with a velocity up to ~23 km/s) and northwest (blueshifted, velocity up to ~30 km/s) directions, while the southern pair has an orientation from southwest (blueshifted, velocity up to 13 km/s) to northeast (redshifted, velocity up to ~41 km/s). The outflow mass of the northern pair, driven by the higher mass source CG30N, is ~9 times larger than that of the southern pair. The discovery of the quadrupolar molecular outflow in the CG30 protobinary system, as well as the presence of other quadrupolar outflows associated with binary systems, demonstrate that the disks in (wide) binary systems are not necessarily co-aligned after fragmentation.Comment: 12 pages, 3 figures, to be published by ApJL in October 200

    Bose-Einstein correlations in thermal field theory

    Get PDF
    Two-particle correlation functions are calculated for bosons emitted from a localized thermal source (the ``glow'' of a ``hot spot''). In contrast to existing work, non-equilibrium effects up to first order in gradients of the particle distribution function are taken into account. The spectral width of the bosons is shown to be an important quantity: If it is too small, they do not equilibrate locally and therefore strongly increase the measured correlation radius. In memoriam of Eugene Wigner and Hiroomi Umezawa.Comment: Paper in LaTeX. Figures and complete paper available via anonymous ftp, ftp://tpri6c.gsi.de/pub/phenning/hhbr9

    Structure-Preserving Sparsification Methods for Social Networks

    Full text link
    Sparsification reduces the size of networks while preserving structural and statistical properties of interest. Various sparsifying algorithms have been proposed in different contexts. We contribute the first systematic conceptual and experimental comparison of \textit{edge sparsification} methods on a diverse set of network properties. It is shown that they can be understood as methods for rating edges by importance and then filtering globally or locally by these scores. We show that applying a local filtering technique improves the preservation of all kinds of properties. In addition, we propose a new sparsification method (\textit{Local Degree}) which preserves edges leading to local hub nodes. All methods are evaluated on a set of social networks from Facebook, Google+, Twitter and LiveJournal with respect to network properties including diameter, connected components, community structure, multiple node centrality measures and the behavior of epidemic simulations. In order to assess the preservation of the community structure, we also include experiments on synthetically generated networks with ground truth communities. Experiments with our implementations of the sparsification methods (included in the open-source network analysis tool suite NetworKit) show that many network properties can be preserved down to about 20\% of the original set of edges for sparse graphs with a reasonable density. The experimental results allow us to differentiate the behavior of different methods and show which method is suitable with respect to which property. While our Local Degree method is best for preserving connectivity and short distances, other newly introduced local variants are best for preserving the community structure

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application

    Baryon stopping and strange baryon and anti-baryon production at ultrarelativistic energies

    Get PDF
    The amount of proton stopping in central Pb+Pb collisions from 20–160 A GeV as well as hyperon and antihyperon rapidity distributions are calculated within the UrQMD model in comparison to experimental data at 40, 80, and 160 A GeV taken recently from the NA49 collaboration. Furthermore, the amount of baryon stopping at 160A GeV for Pb+Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central collisions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80, and 160 A GeV are underestimated by up to factors of 3—depending on the annihilation cross section employed—which might be addressed to missing multimeson fusion channels in the UrQMD model. Pacs-Nr.: 25.75.2q, 24.10.Jv, 24.10.L

    Baryon stopping and strange baryon/antibaryon production at SPS energies

    Get PDF
    The amount of proton stopping in central Pb+Pb collisions from 20 160 A·GeV as well as hyperon and antihyperon rapidity distributions are calcu- lated within the UrQMD model in comparison to experimental data at 40, 80 and 160 A·GeV taken recently from the NA49 collaboration. Further- more, the amount of baryon stopping at 160 A·GeV for Pb + Pb collisions is studied as a function of centrality in comparison to the NA49 data. We find that the strange baryon yield is reasonably described for central colli- sions, however, the rapidity distributions are somewhat more narrow than the data. Moreover, the experimental antihyperon rapidity distributions at 40, 80 and 160 A·GeV are underestimated by up to factors of 3 - depending on the annihilation cross section employed - which might be addressed to missing multi-meson fusion channels in the UrQMD model. PACS 25.75.+

    Kepler-539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    Get PDF
    We confirm the planetary nature of Kepler-539b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539b is a dense Jupiter-like planet with a mass of Mp = 0.97 Mjup and a radius of Rp = 0.747 Rjup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at roughly 0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539c and our analysis suggests that it has a mass between 1.2 and 3.6 Mjup, revolving on a very eccentric orbit (0.4<e<0.6) with a period larger than 1000 days. The high eccentricity of planet c is the probable cause of the TTV modulation of planet b. The analysis of the CAFE spectra revealed a relatively high photospheric lithium content, A(Li)=2.48 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young.Comment: 11 pages, 14 figures, accepted for publication in Astronomy & Astrophysic
    corecore