1,075 research outputs found

    Fast and flexible data structures for the LHCb Run 3 software trigger

    Full text link
    Starting in 2022, the upgraded LHCb detector will collect data with a pure software trigger. In its first stage, reducing the rate from 30MHz to about 1MHz, GPUs are used to reconstruct and trigger on B and D meson topologies and high-pT objects in the event. In its second stage, a CPU farm is used to reconstruct the full event and perform candidate selections, which are persisted for offline use with an output rate of about 10 GB/s. Fast data processing, flexible and custom-designed data structures tailored for SIMD architectures and efficient storage of the intermediate data at various steps of the processing pipeline onto persistent media, e.g. tapes is essential to guarantee the full physics program of LHCb. In this talk, we will present the event model and data persistency developments for the trigger of LHCb in Run 3. Particular emphasize will be given to the novel software-design aspects with respect to the Run 1+2 data taking, the performance improvements which can be achieved and the experience of restructuring a major part of the reconstruction software in a large HEP experiment.Comment: Connecting The Dots (CTD 2022), Princeton, United States Of America, 31 May - 2 Jun 202

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    First observation of the Λ0 b → Λ+ c D− s K+K− decay and search for pentaquarks in the Λ+ c D− s system

    Get PDF
    The Λ0 b → Λþ c D− s KþK− decay is observed for the first time using the data sample from proton-proton collisions recorded at a center-of-mass energy of 13 TeV with the LHCb detector, corresponding to an integrated luminosity of 6 fb−1. The ratio of branching fraction to that of Λ0 b → Λþ c D− s decays is measured as 0.0141 0.0019 0.0012, where the first uncertainty is statistical and the second systematic. A search for hidden-charm pentaquarks with strangeness is performed in the Λþ c D− s system. No evidence is found, and upper limits on the production ratio of Pccs¯ ð4338Þ0 and Pccs¯ ð4459Þ0 pentaquarks relative to the Λþ c D− s final state are set at the 95% confidence level as 0.12 and 0.20, respectively

    Performance optimization for the LHCb experiment

    No full text
    The LHCb experiment, at CERN, is preparing a major upgrade of its detector and a change from an hardware-based to a fully software-based trigger system. It is now facing the challenge of being able to process incoming events at a rate of 30 million events per second. To cope with this massive data input, the software must be optimized to use the processing power of the filtering farm more efficiently. This thesis focus on the first algorithm of LHCb’s High Level Trigger software: the Vertex Locator (VELO) reconstruction algorithm. The VELO is the first detector encountered by particles, directly surrounding the interaction region. Its goal is to find the initial track candidate that are then followed through the other layers of the LHCb detector with a good enough resolution that they could also be used to locate the origin of the collisions. The first step of this algorithm is to prepare the data by grouping pixels of the silicon sensors into hits; this process is called connected component analysis (CCA). This thesis presents multiple new CCA algorithms for both CPU and GPU architectures. The first algorithm, HA4, was developed at the very start of this thesis and improved the state-of-the-art in connected component labeling on GPUs, as well as being the first efficient implementation of connected component analysis on GPUs. The second algorithm is a GPU port of the FLSL SIMD CPU algorithm, inspired by the LSL algorithm. FLSL on GPUs improved upon HA4 by reducing the memory accesses conflicts that are especially presents on new hardware with a lot of cores. Along with FLSL, two other optimisations aimed at further reducing conflicts are presented and evaluated. On CPU, two new algorithms were made for this thesis. The first one is a modification of the classic Rosenfeld algorithm to use SIMD. The second one is a new algorithm, named SparseCCL, which takes advantage of the sparsity of the input images. A new VELO reconstruction algorithm using SIMD is presented, that enable LHCb to process events in real time and improve the quality of the reconstruction. The SIMDWrapper library, developed for the new VELO algorithm, is now part of LHCb’s software and is used in other algorithms

    Fast and flexible data structures for the LHCb Run 3 software trigger

    No full text
    Starting in 2022, the upgraded LHCb detector will collect data with a pure software trigger. In its first stage, reducing the rate from 30MHz to about 1MHz, GPUs are used to reconstruct and trigger on B and D meson topologies and high-pTp_T objects in the event. In its second stage, a CPU farm is used to reconstruct the full event and perform candidate selections, which are persisted for offline use with an output rate of about 10 GB/s. Fast data processing, flexible and custom-designed data structures tailored for SIMD architectures and efficient storage of the intermediate data at various steps of the processing pipeline onto persistent media, e.g. tapes is essential to guarantee the full physics program of LHCb. In this talk, we will present the event model and data persistency developments for the trigger of LHCb in Run 3. Particular emphasize will be given to the novel software-design aspects with respect to the Run 1+2 data taking, the performance improvements which can be achieved and the experience of restructuring a major part of the reconstruction software in a large HEP experiment

    Search for Bc+ ⁣π+μ+μ{{B} _{c} ^+} \!\rightarrow {{\pi } ^+} {\mu ^+\mu ^-} decays and measurement of the branching fraction ratio B(Bc+ ⁣ψ(2S)π+)/B(Bc+ ⁣J ⁣/ψπ+){\mathcal {B}} ({{B} _{c} ^+} \!\rightarrow {\psi {(2S)}} {{\pi } ^+} )/{\mathcal {B}} ({{B} _{c} ^+} \!\rightarrow {{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} {{\pi } ^+} ).

    No full text

    Measurement of the CKM angle γ using the B±^{±}→ D^{*}h±^{±} channels

    No full text

    Fraction of

    No full text
    corecore