6,009 research outputs found
Prospects for transient gravitational waves at r-mode frequencies associated with pulsar glitches
t Glitches in pulsars are likely to trigger oscillation modes in the fluid interior of neutron stars. We examined these oscillations specifically at r-mode frequencies. The excited r-modes will emit gravitational waves and can have long damping time scales (minutes - days). We use simple estimates of how much energy the glitch might put into the r-mode and assess the detectability of the emitted gravitational waves with future interferometers
An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches
We review and expand on a Bayesian model selection technique for the
detection of gravitational waves from neutron star ring-downs associated with
pulsar glitches. The algorithm works with power spectral densities constructed
from overlapping time segments of gravitational wave data. Consequently, the
original approach was at risk of falsely identifying multiple signals where
only one signal was present in the data. We introduce an extension to the
algorithm which uses posterior information on the frequency content of detected
signals to cluster events together. The requirement that we have just one
detection per signal is now met with the additional bonus that the belief in
the presence of a signal is boosted by incorporating information from adjacent
time segments.Comment: 6 pages, 4 figures, submitted to AMALDI 7 proceeding
Entanglement in a Valence-Bond-Solid State
We study entanglement in Valence-Bond-Solid state. It describes the ground
state of Affleck, Kennedy, Lieb and Tasaki quantum spin chain. The AKLT model
has a gap and open boundary conditions. We calculate an entropy of a subsystem
(continuous block of spins). It quantifies the entanglement of this block with
the rest of the ground state. We prove that the entanglement approaches a
constant value exponentially fast as the size of the subsystem increases.
Actually we proved that the density matrix of the continuous block of spins
depends only on the length of the block, but not on the total size of the chain
[distance to the ends also not essential]. We also study reduced density
matrices of two spins both in the bulk and on the boundary. We evaluated
concurrencies.Comment: 4pages, no figure
Null-stream veto for two co-located detectors: Implementation issues
Time-series data from multiple gravitational wave (GW) detectors can be
linearly combined to form a null-stream, in which all GW information will be
cancelled out. This null-stream can be used to distinguish between actual GW
triggers and spurious noise transients in a search for GW bursts using a
network of detectors. The biggest source of error in the null-stream analysis
comes from the fact that the detector data are not perfectly calibrated. In
this paper, we present an implementation of the null-stream veto in the
simplest network of two co-located detectors. The detectors are assumed to have
calibration uncertainties and correlated noise components. We estimate the
effect of calibration uncertainties in the null-stream veto analysis and
propose a new formulation to overcome this. This new formulation is
demonstrated by doing software injections in Gaussian noise.Comment: Minor changes; To appear in Class. Quantum Grav. (Proc. GWDAW10
Generalised gravitational burst generation with Generative Adversarial Networks
We introduce the use of conditional generative adversarial networks
forgeneralised gravitational wave burst generation in the time
domain.Generativeadversarial networks are generative machine learning models
that produce new databased on the features of the training data set. We
condition the network on fiveclasses of time-series signals that are often used
to characterise gravitational waveburst searches: sine-Gaussian, ringdown,
white noise burst, Gaussian pulse and binaryblack hole merger. We show that the
model can replicate the features of these standardsignal classes and, in
addition, produce generalised burst signals through interpolationand class
mixing. We also present an example application where a convolutional
neuralnetwork classifier is trained on burst signals generated by our
conditional generativeadversarial network. We show that a convolutional neural
network classifier trainedonly on the standard five signal classes has a poorer
detection efficiency than aconvolutional neural network classifier trained on a
population of generalised burstsignals drawn from the combined signal class
space
Radiative Transfer for Exoplanet Atmospheres
Remote sensing of the atmospheres of distant worlds motivates a firm
understanding of radiative transfer. In this review, we provide a pedagogical
cookbook that describes the principal ingredients needed to perform a radiative
transfer calculation and predict the spectrum of an exoplanet atmosphere,
including solving the radiative transfer equation, calculating opacities (and
chemistry), iterating for radiative equilibrium (or not), and adapting the
output of the calculations to the astronomical observations. A review of the
state of the art is performed, focusing on selected milestone papers.
Outstanding issues, including the need to understand aerosols or clouds and
elucidating the assumptions and caveats behind inversion methods, are
discussed. A checklist is provided to assist referees/reviewers in their
scrutiny of works involving radiative transfer. A table summarizing the
methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in
references, main text unchange
Inferring Core-Collapse Supernova Physics with Gravitational Waves
Stellar collapse and the subsequent development of a core-collapse supernova
explosion emit bursts of gravitational waves (GWs) that might be detected by
the advanced generation of laser interferometer gravitational-wave
observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from
core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct
evidence for the yet uncertain mechanism driving supernovae in massive stars.
Recent multi-dimensional simulations of core-collapse supernovae exploding via
the neutrino, magnetorotational, and acoustic explosion mechanisms have
predicted GW signals which have distinct structure in both the time and
frequency domains. Motivated by this, we describe a promising method for
determining the most likely explosion mechanism underlying a hypothetical GW
signal, based on Principal Component Analysis and Bayesian model selection.
Using simulated Advanced LIGO noise and assuming a single detector and linear
waveform polarization for simplicity, we demonstrate that our method can
distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc)
and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc.
Furthermore, we show that we can differentiate between models for rotating
accretion-induced collapse of massive white dwarfs and models of rotating iron
core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
A method for detecting gravitational waves coincident with gamma ray bursts
The mechanism for gamma ray bursters and the detection of gravitational waves
(GWs) are two outstanding problems facing modern physics. Many models of gamma
ray bursters predict copious GW emission, so the assumption of an association
between GWs and GRBs may be testable with existing bar GW detector data. We
consider Weber bar data streams in the vicinity of known GRB times and present
calculations of the expected signal after co-addition of 1000 GW/GRBs that have
been shifted to a common zero time. Our calculations are based on assumptions
concerning the GW spectrum and the redshift distribution of GW/GRB sources
which are consistent with current GW/GRB models. We discuss further
possibilities of GW detection associated with GRBs in light of future bar
detector improvements and suggest that co-addition of data from several
improved bar detectors may result in detection of GWs (if the GW/GRB assumption
is correct) on a time scale comparable with the LIGO projects.Comment: Accepted by MNRAS. 9 pages, 6 ps figures, MNRAS style. Proof
corrections made, accepted versio
- …