1,609 research outputs found

    Contact force sensing in ablation of ventricular arrhythmias using a 56-hole open-irrigation catheter: a propensity-matched analysis.

    Get PDF
    PURPOSE: The effect of adding contact force (CF) sensing to 56-hole tip irrigation in ventricular arrhythmia (VA) ablation has not been previously studied. We aimed to compare outcomes with and without CF sensing in VA ablation using a 56-hole radiofrequency (RF) catheter. METHODS: A total of 164 patients who underwent first-time VA ablation using Thermocool SmartTouch Surround Flow (TC-STSF) catheter (Biosense-Webster, Diamond Bar, CA, USA) were propensity-matched in a 1:1 fashion to 164 patients who had first-time ablation using Thermocool Surround Flow (TC-SF) catheter. Patients were matched for age, gender, cardiac aetiology, ejection fraction and approach. Acute success, complications and long-term follow-up were compared. RESULTS: There was no difference between procedures utilising either TC-SF or TC-STSF in acute success (TC-SF: 134/164 (82%), TC-STSF: 141/164 (86%), p = 0.3), complications (TC-SF: 11/164 (6.7%), TC-STSF: 11/164 (6.7%), p = 1.0) or VA-free survival (TC-SF: mean arrhythmia-free survival time = 5.9 years, 95% CI = 5.4-6.4, TC-STSF: mean = 3.2 years, 95% CI = 3-3.5, log-rank p = 0.74). Fluoroscopy time was longer in normal hearts with TC-SF (19 min, IQR: 14-30) than TC-STSF (14 min, IQR: 8-25; p = 0.04). CONCLUSION: Both TC-SF and TC-STSF catheters are safe and effective in treating VAs. The use of CF sensing catheters did not improve safety or acute and long-term outcomes, but reduced fluoroscopy time in normal heart VA

    Photosynthetic activity buffers ocean acidification in seagrass meadows

    Get PDF
    Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5–12 m) seagrass (<i>Posidonia oceanica</i>) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (&Omega;<sub>Ar</sub>)) and O<sub>2</sub> within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pH<sub>NBS</sub> and max and range &Omega;<sub>Ar</sub>. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min &Omega;<sub>Ar</sub>, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range &Omega;<sub>Ar</sub> within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, &Omega;<sub>Ar</sub> and carbonate deposition. <br></br> Calcifying organisms, e.g. epiphytes with carbonate skeletons, may benefit from the modification of the carbonate system by the meadow. There is, however, concern for the ability of seagrasses to provide modifications of similar importance in the future. The predicted decline of seagrass meadows may alter the scope for alteration of pH within a seagrass meadow and in the water column above the meadow, particularly if shoot density and biomass decline, on which LAI is based. Organisms associated with seagrass communities may therefore suffer from the loss of pH buffering capacity in degraded meadows

    Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation

    Get PDF
    Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo . However, in two‐dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more‐accurate and relevant long‐term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly‐l ‐lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down‐regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more‐efficient differentiation protocols for stem‐cell‐derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. Conclusion: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    A ‘quiet revolution’? The impact of Training Schools on initial teacher training partnerships

    Get PDF
    This paper discusses the impact on initial teacher training of a new policy initiative in England: the introduction of Training Schools. First, the Training School project is set in context by exploring the evolution of a partnership approach to initial teacher training in England. Ways in which Training Schools represent a break with established practice are considered together with their implications for the dominant mode of partnership led by higher education institutions (HEIs). The capacity of Training Schools to achieve their own policy objectives is examined, especially their efficacy as a strategy for managing innovation and the dissemination of innovation. The paper ends by focusing on a particular Training School project which has adopted an unusual approach to its work and enquires whether this alternative approach could offer a more profitable way forward. During the course of the paper, five different models of partnership are considered: collaborative, complementary, HEI-led, school-led and partnership within a partnership

    Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys

    Get PDF
    Background Since the start of organ transplantation, hypothermia-forced hypometabolism has been the cornerstone in organ preservation. Cold preservation showed to protect against ischemia, although post-transplant injury still occurs and further improvement in preservation techniques is needed. We hypothesize that hydrogen sulphide can be used as such a new preservation method, by inducing a reversible hypometabolic state in human sized kidneys during normothermic machine perfusion. Methods Porcine kidneys were connected to an ex-vivo isolated, oxygen supplemented, normothermic blood perfusion set-up. Experimental kidneys (n = 5) received a 85mg NaHS infusion of 100 ppm and were compared to controls (n = 5). As a reflection of the cellular metabolism, oxygen consumption, mitochondrial activity and tissue ATP levels were measured. Kidney function was assessed by creatinine clearance and fractional excretion of sodium. To rule out potential structural and functional deterioration, kidneys were studied for biochemical markers and histology. Results Hydrogen sulphide strongly decreased oxygen consumption by 61%, which was associated with a marked decrease in mitochondrial activity/function, without directly affecting ATP levels. Renal biological markers, renal function and histology did not change after hydrogen sulphide treatment. Conclusion In conclusion, we showed that hydrogen sulphide can induce a controllable hypometabolic state in a human sized organ, without damaging the organ itself and could thereby be a promising therapeutic alternative for cold preservation under normothermic conditions in renal transplantation
    corecore