2,437 research outputs found

    Synthesis of neutral nickel catalysts for ethylene polymerization – the influence of ligand size on catalyst stability

    Get PDF
    A facile synthesis of nickel salicylaldimine complexes with labile dissociating ligands is described. In addition to producing highly active ethylene polymerization catalysts, important insights into the effect of ligand size on catalyst stability and information on the mechanism of polymerization are provided

    A Programmable True Random Number Generator Using Commercial Quantum Computers

    Full text link
    Random number generators (RNG) are essential elements in many cryptographic systems. True random number generators (TRNG) rely upon sources of randomness from natural processes such as those arising from quantum mechanics phenomena. We demonstrate that a quantum computer can serve as a high-quality, weakly random source for a generalized user-defined probability mass function (PMF). Specifically, QC measurement implements the process of variate sampling according to a user-specified PMF resulting in a word comprised of electronic bits that can then be processed by an extractor function to address inaccuracies due to non-ideal quantum gate operations and other system biases. We introduce an automated and flexible method for implementing a TRNG as a programmed quantum circuit that executes on commercially-available, gate-model quantum computers. The user specifies the desired word size as the number of qubits and a definition of the desired PMF. Based upon the user specification of the PMF, our compilation tool automatically synthesizes the desired TRNG as a structural OpenQASM file containing native gate operations that are optimized to reduce the circuit's quantum depth. The resulting TRNG provides multiple bits of randomness for each execution/measurement cycle; thus, the number of random bits produced in each execution is limited only by the size of the QC. We provide experimental results to illustrate the viability of this approach.Comment: 15 pages, 7 figures, SPIE Defense + Commercial Sensing: Quantum Information Science, Sensing, and Computation X

    Automated Synthesis of Quantum Subcircuits

    Full text link
    The quantum computer has become contemporary reality, with the first two-qubit machine of mere decades ago transforming into cloud-accessible devices with tens, hundreds, or--in a few cases--even thousands of qubits. While such hardware is noisy and still relatively small, the increasing number of operable qubits raises another challenge: how to develop the now-sizeable quantum circuits executable on these machines. Preparing circuits manually for specifications of any meaningful size is at best tedious and at worst impossible, creating a need for automation. This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization, which transforms classically-specified, irreversible functions to both technology-independent and technology-dependent quantum circuits. We also describe and analyze the toolkit's application to three situations--quantum read-only memories, quantum random number generators, and quantum oracles--and illustrate the toolkit's start-to-finish features from the input of classical functions to the output of quantum circuits ready-to-run on commercial hardware. Furthermore, we illustrate how the toolkit enables research beyond circuit synthesis, including comparison of synthesis and optimization methods and deeper understanding of even well-studied quantum algorithms. As quantum hardware continues to develop, such quantum circuit toolkits will play a critical role in realizing its potential.Comment: 49 pages, 25 figures, 20 table

    The Effects of a High Fat Meal on Blood Flow Regulation during Arm Exercise

    Get PDF
    A diet high in saturated fats results in endothelial dysfunction and can lead to atherosclerosis, a precursor to cardiovascular disease. Exercise training is a potent stimulus though to mitigate the negative effects of a high saturated fat diet; however, it is unclear how high-saturated fat meal (HSFM) consumption impacts blood flow regulation during a single exercise session. PURPOSE: This study sought to examine the impact of a single HSFM on peripheral vascular function during an acute upper limb exercise bout. METHODS: Ten young healthy individuals completed two sessions of progressive handgrip exercise. Subjects either consumed a HSFM (0.84 g of fat/kg of body weight) 4 hours prior or remained fasted before the exercise bout. Progressive rhythmic handgrip exercise (6kg, 12kg, 18kg) was performed for 3 minutes per stage at rate of 1 Hz. The brachial artery (BA) diameter and blood velocity was obtained using Doppler Ultrasound (GE Logiq e) and BA blood flow was calculated with these values. RESULTS: BA blood flow and flow mediated dilation (normalized for shear rate) during the handgrip exercise significant increased from baseline in all workloads, but no differences were revealed in response to the HSFM consumption. CONCLUSION: Progressive handgrip exercise augmented BA blood flow and flow mediated dilation in both testing days; however, there was no significant differences following the HSFM consumption. This suggests that upper limb blood flow regulation during exercise is unaltered by a high fat meal in young healthy individuals.https://scholarscompass.vcu.edu/gradposters/1060/thumbnail.jp

    Designing a Photonic Physically Unclonable Function Having Resilience to Machine Learning Attacks

    Full text link
    Physically unclonable functions (PUFs) are designed to act as device 'fingerprints.' Given an input challenge, the PUF circuit should produce an unpredictable response for use in situations such as root-of-trust applications and other hardware-level cybersecurity applications. PUFs are typically subcircuits present within integrated circuits (ICs), and while conventional IC PUFs are well-understood, several implementations have proven vulnerable to malicious exploits, including those perpetrated by machine learning (ML)-based attacks. Such attacks can be difficult to prevent because they are often designed to work even when relatively few challenge-response pairs are known in advance. Hence the need for both more resilient PUF designs and analysis of ML-attack susceptibility. Previous work has developed a PUF for photonic integrated circuits (PICs). A PIC PUF not only produces unpredictable responses given manufacturing-introduced tolerances, but is also less prone to electromagnetic radiation eavesdropping attacks than a purely electronic IC PUF. In this work, we analyze the resilience of the proposed photonic PUF when subjected to ML-based attacks. Specifically, we describe a computational PUF model for producing the large datasets required for training ML attacks; we analyze the quality of the model; and we discuss the modeled PUF's susceptibility to ML-based attacks. We find that the modeled PUF generates distributions that resemble uniform white noise, explaining the exhibited resilience to neural-network-based attacks designed to exploit latent relationships between challenges and responses. Preliminary analysis suggests that the PUF exhibits similar resilience to generative adversarial networks, and continued development will show whether more-sophisticated ML approaches better compromise the PUF and -- if so -- how design modifications might improve resilience.Comment: 14 pages, 8 figure

    Review of Fluorescence Guided Surgery Systems: Identification of Key Performance Capabilities Beyond Indocyanine Green Imaging

    Get PDF
    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here

    Hip abductor moment arm - a mathematical analysis for proximal femoral replacement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients undergoing proximal femoral replacement for tumor resection often have compromised hip abductor muscles resulting in a Trendelenberg limp and hip instability. Commercially available proximal femoral prostheses offer several designs with varying sites of attachment for the abductor muscles, however, no analyses of these configurations have been performed to determine which design provides the longest moment arm for the hip abductor muscles during normal function.</p> <p>Methods</p> <p>This study analyzed hip abductor moment arm through hip adduction and abduction with a trigonometric mathematical model to evaluate the effects of alterations in anatomy and proximal femoral prosthesis design. Prosthesis dimensions were taken from technical schematics that were obtained from the prosthesis manufacturers. Manufacturers who contributed schematics for this investigation were Stryker Orthopaedics and Biomet.</p> <p>Results</p> <p>Superior and lateral displacement of the greater trochanter increased the hip abductor mechanical advantage for single-leg stance and adduction and preserved moment arm in the setting of Trendelenberg gait. Hip joint medialization resulted in less variance of the abductor moment arm through coronal motion. The Stryker GMRS endoprosthesis provided the longest moment arm in single-leg stance.</p> <p>Conclusions</p> <p>Hip abductor moment arm varies substantially throughout the hip's range of motion in the coronal plane. Selection of a proximal femur endoprosthesis with an abductor muscle insertion that is located superiorly and laterally will optimize hip abductor moment arm in single-leg stance compared to one located inferiorly or medially.</p
    corecore