542 research outputs found

    Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing

    Get PDF
    The present work presents and discusses the results of a comprehensive study on the bioactive properties of Nb-substituted silicate glass derived from 45S5 bioglass. In vitro and in vivo experiments were performed. We undertook three different types of in vitro analyses: (i) investigation of the kinetics of chemical reactivity and the bioactivity of Nb-substituted glass in simulated body fluid (SBF) by 31P MASNMR spectroscopy, (ii) determination of ionic leaching profiles in buffered solution by inductively coupled plasma optical emission spectrometry (ICP-OES), and (iii) assessment of the compatibility and osteogenic differentiation of human embryonic stem cells (hESCs) treated with dissolution products of different compositions of Nb-substituted glass. The results revealed that Nb-substituted glass is not toxic to hESCs. Moreover, adding up to 1.3 mol% of Nb2O5 to 45S5 bioglass significantly enhanced its osteogenic capacity. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their biocompatibility and bioactivity. Results showed all Nb-containing glass was biocompatible and that the addition of 1.3 mol% of Nb2O5, replacing phosphorous, increases the osteostimulation of bioglass. Therefore, these results support the assertion that Nb-substituted glass is suitable for biomedical applications

    Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements

    Get PDF
    In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixatio

    In vitro bioactivity of titanium-doped bioglass

    Get PDF
    Previous studies have suggested that incorporating relatively small quantities of titanium dioxide into bioactive glasses may result in an increase in bioactivity and hydroxyapatite formation. The present work therefore investigated the in vitro bioactivity of a titanium doped bioglass and compared the results with 45S5 bioglass. Apatite formation was evaluated for bioglass and Ti-bioglass in the presence and absence of foetal calf serum. Scanning electron microscopy (SEM) images were used to evaluate the surface development and energy dispersive X-ray measurements provided information on the elemental ratios. X-ray diffraction spectra confirmed the presence of apatite formation. Cell viability was assessed for bone marrow stromal cells under direct and indirect contact conditions and cell adhesion was assessed using SEM

    Recent advances in experimental testing and computational modelling for characterisation of mechanical properties of biomaterials and biological cells

    Get PDF
    Biomaterials and biological cells possess a number of different properties; amongst them, mechanical properties are extremely important in studies and applications about tissue engineering, design and development of implants, surgical tools and medical devices for treatments and diagnosis of diseases. Changes in mechanical properties such as a stiffness of cells are often the signs of changes in cell physiology or diseases in tissues; and studying these changes can lead to the development of devices for early disease detection and new drug delivery mechanisms. This paper presents advances in recent years in experimental testing and computational modelling for characterisation of mechanical properties of biomaterials and biological cells, in which the presented research projects and related studies were mainly implemented by research groups in the UK. The recent important findings as well as research directions and challenges are emphasised and discussed, to open channels for research collaborations in development of cost-effective medical diagnosis and treatment solutions
    • …
    corecore