2 research outputs found

    A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays

    Get PDF
    The limitation of current dissociative fluorescence enhancement techniques is that the lanthanide chelate structures used as molecular probes are not stable enough in one-step assays with high concentrations of complexones or metal ions in the reaction mixture since these substances interfere with lanthanide chelate conjugated to the detector molecule. Lanthanide chelates of diethylenetriaminepentaacetic acid (DTPA) are extremely stable, and we used EuDTPA derivatives conjugated to antibodies as tracers in one-step immunoassays containing high concentrations of complexones or metal ions. Enhancement solutions based on different β-diketones were developed and tested for their fluorescence-enhancing capability in immunoassays with EuDTPA-labelled antibodies. Characteristics tested were fluorescence intensity, analytical sensitivity, kinetics of complex formation and signal stability. Formation of fluorescent complexes is fast (5 min) in the presented enhancement solution with EuDTPA probes withstanding strong complexones (ethylenediaminetetra acetate (EDTA) up to 100 mM) or metal ions (up to 200 μM) in the reaction mixture, the signal is intensive, stable for 4 h and the analytical sensitivity with Eu is 40 fmol/L, Tb 130 fmol/L, Sm 2.1 pmol/L and Dy 8.5 pmol/L. With the improved fluorescence enhancement technique, EDTA and citrate plasma samples as well as samples containing relatively high concentrations of metal ions can be analysed using a one-step immunoassay format also at elevated temperatures. It facilitates four-plexing, is based on one chelate structure for detector molecule labelling and is suitable for immunoassays due to the wide dynamic range and the analytical sensitivity

    Superior bendability of direct-quenched 960 MPa strip steels

    No full text
    Abstract The present paper shows the effect of microstructure on the press brake and frictionless 3-point bending of 6 mm thick ultrahigh-strength steel strips with a yield strength of 960 MPa. With a traditional press brake machine the minimum bending radii of the studied steels varied from 1.3 times the thickness to 3.0 times the thickness for the bend axis perpendicular to the rolling direction and in the range 2.0–3.5 times the thickness for the bend axis parallel to the rolling direction. The frictionless 3-point bending-equipment incorporating rotatable die-rollers has been applied to characterize the material work hardening behavior in a way relevant to the bending process, i.e. by using measured punch force vs. position data to derive the bending moment and the evolution of the flow stress and the strip curvature during the bending process. The main aim of the present paper is to establish an understanding of how bendability can be significantly improved and made more isotropic by modifying the subsurface microstructure to include a relatively soft polygonal ferrite and granular bainite layer and why the subsurface microstructure plays such a dominant role
    corecore