39 research outputs found

    Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia.</p> <p>Methods</p> <p>First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion.</p> <p>Results</p> <p>Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours.</p> <p>Conclusions</p> <p>Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.</p

    Testing devices for the prevention and treatment of stroke and its complications

    Get PDF
    We are entering a challenging but exciting period when many new interventions may appear for stroke based on the use of devices. Hopefully these will lead to improved outcomes at a cost that can be afforded in most parts of the world. Nevertheless, it is vital that lessons are learnt from failures in the development of pharmacological interventions (and from some early device studies), including inadequate preclinical testing, suboptimal trial design and analysis, and underpowered studies. The device industry is far more disparate than that seen for pharmaceuticals; companies are very variable in size and experience in stroke, and are developing interventions across a wide range of stroke treatment and prevention. It is vital that companies work together where sales and marketing are not involved, including in understanding basic stroke mechanisms, prospective systematic reviews, and education of physicians. Where possible, industry and academics should also work closely together to ensure trials are designed to be relevant to patient care and outcomes. Additionally, regulation of the device industry lags behind that for pharmaceuticals, and it is critical that new interventions are shown to be safe and effective rather than just feasible. Phase IV postmarketing surveillance studies will also be needed to ensure that devices are safe when used in the ‘real-world’ and to pick up uncommon adverse events
    corecore