95 research outputs found
Molecular and serological survey of selected viruses in free-ranging wild ruminants in Iran
A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis), 22 wild goat (Capra aegagrus), nine Indian gazelle (Gazella bennettii) and eight Goitered gazelle (Gazella subgutturosa) during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV), Pestiviruses [Border Disease virus (BVD) and Bovine Viral Diarrhoea virus (BVDV)], Bluetongue virus (BTV), Bovine herpesvirus type 1 (BHV-1), and Parainfluenza type 3 (PI3). Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs) were tested using polymerase chain reaction (PCR) for PPRV, Foot and Mouth Disease virus (FMDV), Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2) and BHV-1. Serologic tests were positive for antibodies against PPRV (17%), Pestiviruses (2%) and BTV (2%). No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%), FMDV (11%), BTV (3%), OvHV-2 (31%) and BHV-1 (1.5%). None of the samples were positive for Pestiviruses.Farhid Hemmatzadeh, Wayne Boardman, Arezo Alinejad, Azar Hematzade, Majid Kharazian Moghada
Newcastle Disease Virus Induces Profound Lymphoid Depletion with Different Patterns of Necroptosis, Necrosis, and Oxidative DNA Damage in Bursa, Spleen, and Other Lymphoid Tissues
This study delves into the pathogenesis of virulent genotype VII strains of the Newcastle disease virus (NDV), focusing on experimentally infected birds. Predominant and consistent lesions observed include bursal atrophy and extensive depletion of all lymphoid tissues. Immunohistochemistry (IHC) analysis, targeting apoptosis (Caspase-3), necroptosis (MLKL), and NDV markers, indicates that bursal atrophy is linked to a non-apoptotic programmed cell death pathway known as “necroptosis”. Repair assisted damage detection (RADD) of the bursa reveal oxidative DNA damage patterns consistent with programmed cell death, aligning with MLKL expression. Contrastingly, in the spleen, our findings suggest that necrosis (non-programmed cell death) predominantly contributes to lymphoid depletion. This conclusion is supported by evidence of karyorrhexis, fibrinous inflammation, RADD analyses, and IHC. Moreover, in addition to being pathogenic in its own right, NDV caused extensive and rapid lymphoid depletion that should be expected to contribute to profound immunosuppression. The elucidation of necroptosis in NDV-infected chickens provides a good rationale to investigate this mechanism in other paramyxoviral diseases such as human measles
Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen
Newcastle disease virus (NDV) has caused significant outbreaks in South-East Asia, particularly in Indonesia in recent years. Recently emerged genotype VII NDVs (NDV-GVII) have shifted their tropism from gastrointestinal/respiratory tropism to a lymphotropic virus, invading lymphoid organs including spleen and bursa of Fabricius to cause profound lymphoid depletion. In this study, we aimed to identify candidate genes and biological pathways that contribute to the disease caused by this velogenic NDV-GVII. A transcriptomic analysis based on RNA-Seq of spleen was performed in chickens challenged with NDV-GVII and a control group. In total, 6361 genes were differentially expressed that included 3506 up-regulated genes and 2855 down-regulated genes. Real-Time PCR of ten selected genes validated the RNA-Seq results as the correlation between them is 0.98. Functional and network analysis of Differentially Expressed Genes (DEGs) showed altered regulation of ElF2 signalling, mTOR signalling, proliferation of cells of the lymphoid system, signalling by Rho family GTPases and synaptogenesis signalling in spleen. We have also identified modified expression of IFIT5, PI3K, AGT and PLP1 genes in NDV-GVII infected chickens. Our findings in activation of autophagy-mediated cell death, lymphotropic and synaptogenesis signalling pathways provide new insights into the molecular pathogenesis of this newly emerged NDV-GVII
Evaluation of histopathological on maedi disease with serological confirmation in North-East of Iran
BACKGROUND: The described pulmonary lesions are compatible with lesions previously described for maedi. In this study, one of the most important ovine slow viral infections is "Maedi disease" which was evaluated in Mashhad province. METHODS: During the study, ovine lung samples from 170 sheep (>1 year old) with their serum samples were collected in the Mashhad industrial abattoir. Initially, histopathological study for lung samples was carried out by providing H&E staining, serological test and an indirect ELISA on the serum samples. Histopathological study indicated all three lesions of Maedi disease in ovine lung which included smooth muscle hyperplasia (SMH) of alveolar walls, lymphofollicular hyperplasia (LFH) and interstitial pneumonia (IP). Furthermore, some involvement of each lung sample was estimated from mild-moderate and severe. RESULTS AND DISCUSSION: Results of histopathological study demonstrated 45 cases (26.5%) and 15 cases (8.8%) with moderate degree and severe degree of involvement respectively. Liked-maedi disease included 60 cases (35.3%) of the whole ovine lung samples. Results of serological study showed 34 positive serums (20.0%). In addition, 15 cases (8.8%) of pulmonary lesions which were observed in histopathological study were equal and similar to the lesions previously described for maedi disease, and serological results confirmed them as well. However, there are some pathogens that can cause nearly pathological lesions like maedi in ovine lung. CONCLUSION: This study showed that the pathogen causing maedi disease (maedi-visna virus) can be one of the pathogens causing chronic to subacute lymphoid interstitial pneumonia in Iran. Thus, study on histopathological and serological results correlation was performed.Farhang Sasani, Javad Javanbakht, Farhid Hemmatzadeh, Mehdi R. Moghadam and Mehdi A. Mohammad Hassa
Protein interaction network of Arabidopsis thaliana female gametophyte development identifies novel proteins and relations
Although the female gametophyte in angiosperms consists of just seven cells, it has a complex biological network. In this study, female gametophyte microarray data from Arabidopsis thaliana were integrated into the Arabidopsis interactome database to generate a putative interaction map of the female gametophyte development including proteome map based on biological processes and molecular functions of proteins. Biological and functional groups as well as topological characteristics of the network were investigated by analyzing phytohormones, plant defense, cell death, transporters, regulatory factors, and hydrolases. This approach led to the prediction of critical members and bottlenecks of the network. Seventy-four and 24 upregulated genes as well as 171 and 3 downregulated genes were identified in subtracted networks based on biological processes and molecular function respectively, including novel genes such as the pathogenesis-related protein 4, ER type Ca2+ ATPase 3, dihydroflavonol reductase, and ATP disulfate isomerase. Biologically important relationships between genes, critical nodes, and new essential proteins such as AT1G26830, AT5G20850, CYP74A, AT1G42396, PR4 and MEA were found in the interactome’s network. The positions of novel genes, both upregulated and downregulated, and their relationships with biological pathways, in particular phytohormones, were highlighted in this study.Batool Hosseinpour, Vahid HajiHoseini, Rafieh Kashfi, Esmaeil Ebrahimie and Farhid Hemmatzade
Therapeutic vaccination of koalas harbouring endogenous koala retrovirus (KoRV) improves antibody responses and reduces circulating viral load
The long-term survival of the koala is under serious threat from multiple factors, including infectious disease agents such as Chlamydia and koala retrovirus (KoRV). KoRV is present in both exogenous and endogenous forms, depending on the geographical location of the population. In the northern half of Australia, it is present as an endogenous infection in all koalas, making a case for an urgent need to develop a therapeutic vaccine that might prevent KoRV-associated pathologies in these koalas. To this end, we determined the therapeutic effects of vaccinating koalas harbouring endogenous KoRV with a recombinant KoRV Env protein combined with a Tri-adjuvant. We found that vaccination led to a significant increase in circulating anti-KoRV IgG levels, as well as increase in neutralising antibodies. Our study also showed that post-vaccination antibodies were able to recognize epitopes on the Env protein that were unrecognised pre-vaccination, as well as resulting in an increase in the recognition of the previously recognised epitopes. The vaccine also induced antibodies that were cross-reactive against multiple KoRV-subtypes. Finally, we found a complete clearance of KoRV-A in plasma from koalas that had detectable levels of KoRV-A pre-vaccination. Similarly, there was a significant reduction in the expression of KoRV-B viral RNA levels post-vaccination. Collectively, this study showed that koalas harbouring endogenous KoRV can benefit from prophylactic vaccination against KoRV using a recombinant KoRV-A Env protein and that the mechanism of this protection might be through the boosting of natural anti-KoRV antibodies and expanding the breadth of the recognised epitopes.Olusola Olagoke, Bonnie L. Quigley, Farhid Hemmatzadeh, Galit Tzipori, and Peter Timm
Recombinant M2e protein-based ELISA: A novel and inexpensive approach for differentiating avian influenza infected chickens from vaccinated ones
Available avian influenza (AIV) serological diagnostic tests cannot distinguish vaccinated from naturally infected birds. Differentiation of vaccinated from infected animals (DIVA) is currently advocated as a means of achieving the full control of H5N1. In this study, for the first time, recombinant ectodomain of M2 protein (M2e) of avian influenza virus (H5N1 strain) was used for the DIVA serology test. M2e was cloned into pMAL-P4X vector and expressed in E. coli cells. We used Western blot to recognize the expressed M2e-MBP protein by chicken antisera produced against live H5N1 virus. Also, the specificity of M2e-MBP protein was compared to the M2e synthetic peptide via ELISA. In M2e-MBP ELISA, all sera raised against the live avian influenza viruses were positive for M2e antibodies, whereas sera from killed virus vaccination were negative. Furthermore, M2e-MBP ELISA of the field sera obtained from vaccinated and non-vaccinated chickens showed negative results, while challenged vaccinated chickens demonstrated strong positive reactions. H5N1-originated recombinant M2e protein induced broad-spectrum response and successfully reacted with antibodies against other AIV strains such as H5N2, H9N2, H7N7, and H11N6. The application of the recombinant protein instead of synthetic peptide has the advantages of continues access to an inexpensive reagent for performing a large scale screening. Moreover, recombinant proteins provide the possibility of testing the DIVA results with an additional technique such a Western blotting which is not possible in the case of synthetic proteins. All together, the results of the present investigation show that recombinant M2e-MBP can be used as a robust and inexpensive solution for DIVA test.Farhid Hemmatzadeh, Sumarningsih Sumarningsih, Simson Tarigan, Risa Indriani, N.L.P. Indi Dharmayanti, Esmaeil Ebrahimie, Jagoda Igniatovi
Understanding the undelaying mechanism of HASubtyping in the level of physic-chemal characteristics of protein
The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, NaĂŻve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and predicting possible future structure of influenza pandemics.Mansour Ebrahimi, Parisa Aghagolzadeh, Narges Shamabadi, Ahmad Tahmasebi, Mohammed Alsharifi, David L. Adelson, Farhid Hemmatzadeh, Esmaeil Ebrahimi
Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein
Koala retrovirus (KoRV) infects the majority of Australia's koalas (Phascolarctos cinereus) and has been linked to several life-threatening diseases such as lymphoma and leukemia, as well as Chlamydia and thus poses a threat to the continued survival of this species. While quarantine and antiretroviral drug treatment are possible control measures, they are impractical, leaving vaccination as the only realistic option. In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South Australian koalas: KoRV infected or KoRV free. We report a successful vaccination response in the koalas with no vaccine-associated side effects. The vaccine induced a significant humoral immune response as well as the production of neutralizing antibodies in both groups of koalas. We also identified B-cell epitopes that were differentially recognized in KoRV-infected versus KoRV-free koalas following vaccination. Importantly, we also showed that vaccination had a therapeutic effect on koalas infected exogenously with KoRV by reducing their circulating viral load. Together, this study highlights the possibility of successfully developing a vaccine against KoRV infection in koalas.O Olagoke, D Miller, F Hemmatzadeh, T Stephenson, J Fabijan, P Hutt, S Finch, N Speight and P Timm
Multimeric recombinant M2e protein-based ELISA: A significant improvement in differentiating avian influenza infected chickens from vaccinated ones
Killed avian influenza virus (AIV) vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA) in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e) of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e) for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006) was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.Farshid Hadifar, Jagoda Ignjatovic, Simson Tarigan, Risa Indriani, Esmaeil Ebrahimie, Noor Haliza Hasan, Andrea McWhorter, Sophie Putland, Abdulghaffar Ownagh, Farhid Hemmatzade
- …