123 research outputs found

    In Situ Resistance Measurements of Strained Carbon Nanotubes

    Get PDF
    We investigate the response of multi-walled carbon nanotubes to mechanical strain applied with an Atomic Force Microscope (AFM) probe. We find that in some samples, changes in the contact resistance dominate the measured resistance change. In others, strain large enough to fracture the tube can be applied without a significant change in the contact resistance. In this case we observe that enough force is applied to break the tube without any change in resistance until the tube fails. We have also manipulated the ends of the broken tube back in contact with each other, re-establishing a finite resistance. We observe that in this broken configuration the resistance of the sample is tunable to values 15-350 kW greater than prior to breaking.Comment: Submitted to Applied Physics Letter

    Hands-on tools for nanotechnology

    Get PDF
    A review of several experiments and techniques in the nanometer domain is given. The covered experiments and techniques are a sampling of the results obtained to date in the nanometer domain through an interdisciplinary collaboration that include computer scientists, materials scientists, social scientists and educators. The nano Manipulator provides a hands-on paradigm for materials science, biological science, educational methods and distance collaborations are being explored as well as providing a varied set of hard driving problems for computer science

    Controlled placement of an individual carbon nanotube onto a microelectromechanical structure

    Get PDF
    We report on the precise placement of a single carbon nanotube (CNT) onto a microlectromechanial system (MEMS) structure. Using a hybrid atomic force microscope/scanning electron microscope (AFM/SEM) system, an individual multiwalled CNT was retrieved from a cartridge by the AFM tip, translated to a MEMS device, and then placed across a gap between an actuating and a stationary structure. Progress toward a resistance versus stress/strain measurement on a CNT will be discussed, including SEM images of a MEMS structure we have designed specifically for such a measurement. © 2002 American Institute of Physics

    Response of Methicillin-Resistant Staphylococcus aureus to Amicoumacin A

    Get PDF
    Amicoumacin A exhibits strong antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), hence we sought to uncover its mechanism of action. Genome-wide transcriptome analysis of S. aureus COL in response to amicoumacin A showed alteration in transcription of genes specifying several cellular processes including cell envelope turnover, cross-membrane transport, virulence, metabolism, and general stress response. The most highly induced gene was lrgA, encoding an antiholin-like product, which is induced in cells undergoing a collapse of Δψ. Consistent with the notion that LrgA modulates murein hydrolase activity, COL grown in the presence of amicoumacin A showed reduced autolysis, which was primarily caused by lower hydrolase activity. To gain further insight into the mechanism of action of amicoumacin A, a whole genome comparison of wild-type COL and amicoumacin A-resistant mutants isolated by a serial passage method was carried out. Single point mutations generating codon substitutions were uncovered in ksgA (encoding RNA dimethyltransferase), fusA (elongation factor G), dnaG (primase), lacD (tagatose 1,6-bisphosphate aldolase), and SACOL0611 (a putative glycosyl transferase). The codon substitutions in EF-G that cause amicoumacin A resistance and fusidic acid resistance reside in separate domains and do not bring about cross resistance. Taken together, these results suggest that amicoumacin A might cause perturbation of the cell membrane and lead to energy dissipation. Decreased rates of cellular metabolism including protein synthesis and DNA replication in resistant strains might allow cells to compensate for membrane dysfunction and thus increase cell survivability

    Managing collaboration in the nanoManipulator

    Get PDF
    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a system supporting remote collaboration between users of the nanoManipulator interface to atomic force microscopes. To be accepted by users, the shared nanoManipulator application had to have the same high level of interactivity as the single user system and the application had to support a user’s ability to interleave working privately and working collaboratively. This paper briefly describes the entire collaboration system, but focuses on the shared nanoManipulator application. Based on our experience developing the CnM, we present: a method of analyzing applications to characterize the requirements for sharing data between collaborating sites, examples of data structures that support collaboration, and guidelines for selecting appropriate synchronization and concurrency control schemes
    • …
    corecore