9 research outputs found

    Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV

    Get PDF
    The molecular mechanisms for plastic deformation of bone tissue are not well understood. We analysed temperature and strain-rate dependence of the tensile deformation behaviour in fibrolamellar bone, using a technique originally developed for studying plastic deformation in metals. We show that, beyond the elastic regime, bone is highly strain-rate sensitive, with an activation volume of ca 0.6 nm3. We find an activation energy of 1.1 eV associated with the basic step involved in the plastic deformation of bone at the molecular level. This is much higher than the energy of hydrogen bonds, but it is lower than the energy required for breaking covalent bonds inside the collagen fibrils. Based on the magnitude of these quantities, we speculate that disruption of electrostatic bonds between polyelectrolyte molecules in the extrafibrillar matrix of bone, perhaps mediated by polyvalent ions such as calcium, may be the rate-limiting elementary step in bone plasticity

    Timescales of self-healing in human bone tissue and polymeric ionic liquids

    Get PDF
    Strain (stress-free) relaxation in mechanically prestrained bone has a time constant of 75 s. It occurs by a reorganization of the proteoglycan-glycoprotein matrix between collagen fibers, which requires ionic interactions. Dissolving and relinking the ionic bonds is thus an important tool of nature to enable plastic deformation and to develop self-healing tissues. A way to transfer this approach to technical materials is the attachment of ionic end groups to polymeric chains. In these classes of materials, the so-called polymeric ionic liquids, structural recovery of thermally disorganized material is observed. A time constant between minutes and a week could be achieved, also by ionic rearrangement. The same mechanism, rearrangement of ionic bonds, can lead to vastly different relaxation times when the ionic interaction is varied by exchange of the cationic end groups or the anions

    Dislocation loops in anisotropic elasticity: Displacement field, stress function tensor and interaction energy

    No full text
    The aim of the present paper is to give a clear and straightforward derivation of the displacement field, stress function tensor and interaction energy of dislocations in the theory of incompatible anisotropic elasticity. The displacement field caused by a dislocation loop in an elastically anisotropic medium can be written as the sum of a line integral plus a purely geometric part. This is the anisotropic generalization of the Burgers formula. Formulae for the first-order stress function tensor and the interaction energy between two dislocation loops in anisotropic media are derived. © 2013 Copyright Taylor and Francis Group, LLC

    On the fracture toughness of snow

    No full text
    corecore