120 research outputs found

    Paper Session III-A - Commercialization of KSC Instrumentation Developed to Improve Safety, Reliability, and Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    Get PDF
    The top priority at Kennedy Space Center (KSC) is safety of the flight crew and Shuttle vehicle. This priority is followed by safety of the personnel and physical assets of KSC, and reducing the costs associated with processing the Shuttle and other flight components, driven by budget and down sizing pressures. The KSC Instrumentation Laboratories, managed and staffed by both civil service NASA personnel and by I-NET, the Engineering Support Contractor, help ensure the accomplishment of these priorities by adapting or developing technologies to improve operational safety and decrease processing costs. The Laboratories are organized by technical discipline into nine laboratory teams, each being generally self contained with highly skilled scientists, engineers, and technicians providing the skills necessary to conceive, develop and test innovative technical solutions. The laboratories are the Hazardous Gas Detection Laboratory specializing in the detection of cryogenic propellants using mass spectrometer-based instruments; the Toxic Vapor Detection Laboratory providing very low level detection capabilities for highly toxic hypergolic propellants and other chemicals; the Landing Aids Laboratory which develops navigation and positioning systems to calibrate Shuttle landing guidance systems; the Optical Instrumentation Laboratory specializing in development of low cost optical and ultrasonic instruments; the Transducer Development Laboratory which provides sustaining engineering for the KSC inventory of process measurements; the Contamination Monitoring Laboratory which develops and tests clean room monitoring systems; the Special Instrumentation Laboratory and Special Development Laboratory which each develop and support instruments for non-destructive inspection; and the Data Acquisition Systems Laboratory which provides and develops data acquisition, analysis and recording systems for special tests and permanent installations. These laboratories support all functional areas of KSC and each other in accomplishing a wide range of projects which are improving the techniques involved in processing and testing the flight systems to ensure that the Shuttle remains the prime human space flight system well into the next century

    Paper Session III-A - Advanced Development of Ground Instrumentation as a Key Strategy in Improving the Safety and Efficiency of Space Shuttle Checkout and Launch

    Get PDF
    This paper describes some of the advanced technology instruments produced by the Instrumentation Development Laboratories at Kennedy Space Center. These systems contribute to the realization of the goals of “better, faster, cheaper” set by the NASA Administrator and provide a steady stream of inventions which benefit the commercial marketplace through NASA’s Commercialization and Dual Use Programs. The paper discusses advanced sensors and systems developed in the technical disciplines of cryogenic and toxic gas detection, leak location, hydrogen flame detection, data acquisition, navigation and positioning, payload contamination monitoring, non-destructive inspection, and the specific contributions made to improve safety and efficiency of the Space Shuttle checkout and launch process. These technologies are government programs or for technology transfer to the commercial sector

    Commercialization of Kennedy Space Center Instrumentation Developed to Improve Safety, Reliability, Cost Effectiveness of Space Shuttle Processing, Launch, and Landing

    Get PDF
    Priorities and achievements of the Kennedy Space Center (KSF) Instrumentation Laboratories in improving operational safety and decreasing processing costs associated with the Shuttle vehicle are addressed. Technologies that have been or are in the process of technology transfer are reviewed, and routes by which commercial concerns can obtain licenses to other KSF Instrumentation Laboratory technologies are discussed

    The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)

    Get PDF
    Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants

    Through a Glass, Darkly:The CIA and Oral History

    Get PDF
    This article broaches the thorny issue of how we may study the history of the CIA by utilizing oral history interviews. This article argues that while oral history interviews impose particular demands upon the researcher, they are particularly pronounced in relation to studying the history of intelligence services. This article, nevertheless, also argues that while intelligence history and oral history each harbour their own epistemological perils and biases, pitfalls which may in fact be pronounced when they are conjoined, the relationship between them may nevertheless be a productive one. Indeed, each field may enrich the other provided we have thought carefully about the linkages between them: this article's point of departure. The first part of this article outlines some of the problems encountered in studying the CIA by relating them to the author's own work. This involved researching the CIA's role in US foreign policy towards Afghanistan since a landmark year in the history of the late Cold War, 1979 (i.e. the year the Soviet Union invaded that country). The second part of this article then considers some of the issues historians must confront when applying oral history to the study of the CIA. To bring this within the sphere of cognition of the reader the author recounts some of his own experiences interviewing CIA officers in and around Washington DC. The third part then looks at some of the contributions oral history in particular can make towards a better understanding of the history of intelligence services and the CIA

    Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    Get PDF
    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression

    Multigroup Ethnic Identity Measure (MEIM) Expansion: Measuring Racial, Religious, and National Aspects of Sense of Ethnic Identity Within the United Kingdom

    Get PDF
    These studies examined the degree to which racial, religious, and national aspects of individuals' sense of ethnic identity stand as interrelated, yet distinct, constructs. Results of exploratory factor analyses in Study 1 (n = 272) revealed that a three-factor model specifying racial, religious, and national identities yielded optimal fit to correlational data from an expanded, 36-item version of the Multigroup Ethnic Identity Measure (MEIM; Roberts et al., 1999), although results left room for improvement in model fit. Subsequently, results of confirmatory factor analyses in Study 2 (n = 291) revealed that, after taking covariance among the items into account, a six-factor model specifying exploration and commitment dimensions within each of the racial, religious, and national identity constructs provided optimal fit. Implications for the utility of Goffman's (1963b) interactionist role theory and Erikson's (1968) ego psychology for understanding the full complexity of felt ethnic identity are discussed

    Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae)

    Get PDF
    Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition, which might provide opportunity for females to manipulate the social behavior of their offspring. Megalopta genalis is a mass-provisioning facultatively eusocial sweat bee for which production of males and females in social and solitary nests is concurrent and asynchronous. Female offspring may become either gynes (reproductive dispersers) or workers (non-reproductive helpers). We predicted that if maternal manipulation plays a role in M. genalis caste determination, investment in daughters should vary more than for sons. The mass and protein content of pollen stores provided to female offspring varied significantly more than those of males, but volume and sugar content did not. Sugar content varied more among female eggs in social nests than in solitary nests. Provisions were larger, with higher nutrient content, for female eggs and in social nests. Adult females and males show different patterns of allometry, and their investment ratio ranged from 1.23 to 1.69. Adult body weight varied more for females than males, possibly reflecting increased variation in maternal investment in female offspring. These differences are consistent with a role for maternal manipulation in the social plasticity observed in M. genalis

    Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    Get PDF
    Background: Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results: We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions: Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific
    corecore